matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikBanach'sche Fixpunktsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Banach'sche Fixpunktsatz
Banach'sche Fixpunktsatz < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banach'sche Fixpunktsatz: prob. mit Iterationsverfahren
Status: (Frage) beantwortet Status 
Datum: 11:09 Mi 21.11.2012
Autor: Studiiiii

Aufgabe
[mm]f(x)=\frac{1}{2}(x+\frac{3}{x})[/mm]
Zeigen Sie unter Verwendung des Banachschen Fixpunktsatzes, da die zugehorige Fixpunktiteration [mm]x_{n+1} = f(x_n) fur  n = 0; 1;...für~ alle~  x\in (0;\inf) ~ gegen~ \wurzel{3}[/mm] konvergiert.


Hallo
ich habe ein großes problem mit dem lösen dieser aufgabe.
Ich habe das iterationsverfahren des banachschen fixpunktsatzes angewendet bis ich schon sehr nah an der [mm] \wurzel(3) [/mm] war.

jedoch ist das nun ja kein beweis.
dann hab ich mir die skizze zur funktion passend angeschaut.

wir hatten beispiele in der vorlesung, bei denen gewisse intervalle betrachtet wurden, aber ich versteh nicht wie man genau auf die intervalle kommt.
wählt man die abhängig vom fixpunkt? sozusagen eine umgebung davon??

und was mache ich wenn ich die intervalle gefunden habe?

ein wenig tipps wären hilfreich
ps.: iwie hat der formelsatz gerade nicht funktioniert wie er sollte

        
Bezug
Banach'sche Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 21.11.2012
Autor: fred97

Zeige:

   f([1,3]) [mm] \subseteq [/mm] [1,3]

und f ist auf [1,3]  eine Kontraktion.

FRED

Bezug
                
Bezug
Banach'sche Fixpunktsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:41 Do 22.11.2012
Autor: davux

Hallo,

müsste man die untere Grenze des abgeschlossenen Intervalls, welches D bildet, nicht entsprechend des in der Aufgabenstellung gegebenen Intervalls [mm] $(0,\infty)$ [/mm] setzen? Das heißt, wenn ich $[1,3]$ ansetze, dann habe ich zwar ein abgeschlossenes Intervall und damit eine notwendige Voraussetzung für die Anwendung des Banachschen Fixpunktsatzes, aber ich könnte mir ja dennoch ein [mm] $x_0\in(0,\infty)$ [/mm] wählen, was dann garnicht im Definitionsbereich der vermeintlichen Kontraktion $f$ liegt. Das scheint mir ein Problem zu sein. D sollte schon so gesetzt sein, dass es jeden Anfangswert für die Kontraktion zulässt. Dazu dachte ich mir, ich nehme als Intervallgrenzen für ein [mm] $\epsilon>0$, [/mm] so dass [mm] $x_0-\epsilon>0$, [/mm] das Intervall [mm] $D=[x_0-\epsilon,f(x_0-\epsilon)]$, [/mm] aber ich bin nicht sicher, ob es zulässig ist, die Grenzen derart abhängig vom Startwert zu machen.

Gruß


#Edit: Ich sehe gerade, derjenige welche hat die Aufgabenstellung etwas unvollständig abgetippt. Es müsste meiner Schätzung nach ein fünfzeiliger Absatz sein. Auf jeden Fall ist dies die erste Hürde, die zu bewältigen ist. Es wird allerdings scheinbar nicht deutlich genug, dass es darum geht, D so zu setzen, damit es für jeden Startwert [mm] $x_0\in(0,\infty)$ [/mm] eine Kontraktion ist, weil die Null vergessen wurde.
Edit#3: Letzte Bearbeitung.

Bezug
                        
Bezug
Banach'sche Fixpunktsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Sa 24.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]