matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBahnen, Länge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Bahnen, Länge
Bahnen, Länge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnen, Länge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 So 10.01.2010
Autor: moerni

Aufgabe
Sei M eine transitive G-Menge, sei N [mm] \trianglelefteq [/mm] G und sei H die Standgruppe eines Elements von M. Dann zerfällt M in genau [G:NH] verschiedene N-Bahnen, von denen jede die Länge [N:N [mm] \cap [/mm] H] = [NH:H] hat.

Hallo.
Den ersten Teil der Aufgabe habe ich schon. Ich habe gezeigt, dass jede transitive G-Menge von der Form G/H ist mit einer geeigneten Untergruppe H [mm] \le [/mm] G. Ich konnte dann auch zeigen, dass es genau [G:NH] verschiedene N-Bahnen gibt. Jetzt muss ich noch zeigen, welche Länge eine solche N-Bahn hat. Hier komme ich nicht weiter.
Nach Definition ist die Länge einer Bahn gleich dem Index des Stabilisators. Der Stabilisator ist definiert als [mm] G_x=\{g \in G: gx=g\} \le [/mm] G. Ist dann in diesem Fall der Stabilisator [mm] N_x? [/mm] Hat jemand einen Tipp für mich, wie ich vorgehen soll?
Über eine Antwort wäre ich sehr dankbar,
moerni

        
Bezug
Bahnen, Länge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 So 10.01.2010
Autor: felixf

Hallo moerni!

> Sei M eine transitive G-Menge, sei N [mm]\trianglelefteq[/mm] G und
> sei H die Standgruppe eines Elements von M. Dann zerfällt

Ist die Standgruppe gleich dem Stabilisator?

> M in genau [G:NH] verschiedene N-Bahnen, von denen jede die
> Länge [N:N [mm]\cap[/mm] H] = [NH:H] hat.
>
>  Hallo.
>  Den ersten Teil der Aufgabe habe ich schon. Ich habe
> gezeigt, dass jede transitive G-Menge von der Form G/H ist
> mit einer geeigneten Untergruppe H [mm]\le[/mm] G. Ich konnte dann
> auch zeigen, dass es genau [G:NH] verschiedene N-Bahnen
> gibt. Jetzt muss ich noch zeigen, welche Länge eine solche
> N-Bahn hat. Hier komme ich nicht weiter.
> Nach Definition ist die Länge einer Bahn gleich dem Index
> des Stabilisators. Der Stabilisator ist definiert als
> [mm]G_x=\{g \in G: gx=g\} \le[/mm] G. Ist dann in diesem Fall der
> Stabilisator [mm]N_x?[/mm] Hat jemand einen Tipp für mich, wie ich
> vorgehen soll?

Da die Menge transitiv ist, sind zwei Stabilisatoren zueinander konjugiert: ist $y = g x$, so kannst du eine Beziehung zwischen [mm] $G_x$ [/mm] und [mm] $G_y$ [/mm] mit Hilfe von Konjugation durch $g$ herstellen. Wie die genau aussieht, musst du jetzt selber bestimmen.

Daraus folgt dann, dass alle Bahnen gleichgross sind. Zur Laenge der Bahnen: es gilt doch $|M| = [mm] \sum_{v \in V} |N_v|$ [/mm] mit einem Vertretersystem $V$ der $N$-Bahnen. Hier ist [mm] $|N_v|$ [/mm] unabhaengig von $v$, und $|V| = [G : N H]$. Also folgt [mm] $|N_v| [/mm] = [mm] \frac{|M|}{[G : N H]}$. [/mm] Kommst du damit evtl. weiter?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]