matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationBézierflächen C^r Bedingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - Bézierflächen C^r Bedingung
Bézierflächen C^r Bedingung < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bézierflächen C^r Bedingung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:24 Mo 04.01.2016
Autor: Rocky14

Hallo ihr Lieben!
erstmal ein frohes neues Jahr an alle!

Ich bereite gerade meinen Vortrag für ein Seminar vor und soweit steht auch alles. Jedoch bereitet mir der Beweis eines Satzes Probleme.

Meine Literaturgrundlage ist das Buch Kurven und Flächen im Computer Aided Geometric Design von Gerald Farin.

Konkret geht es um folgende Aussage:
Satz: [mm] C^r [/mm] Bedingung für zusammengesetzte Bézierflächen
Zwei benachbarte Bézierteilflächen sind quer zu ihrer gemeinsamen Randkurve [mm] C^r [/mm] stetig genau dann, wenn alle Reihen ihrer Kontrollnetzpunkte als Polygone von [mm] C^r [/mm] stetigen, stückweisen Bézierkurven aufgefasst werden können.

In Formeln bedeutet dies:         [mm] (1/(u_I-u_{I-1}))^r \Delta^{r,0} b_{m-r,j}= (1/(u_{I+1}-u_I ))^r \Delta^{r,0} b_{m,j} [/mm]
Die Bedingung gilt in analoger Weise für die v-Richtung.

Ich bin bei meinen bisherigen Überlegungen so weit gekommen:
[mm] \bruch{\partial^r}{(\partial u^r )} x(u,v)┤|_{u=u_I} [/mm]
[mm] =\bruch{\partial^r}{(\partial u^r )} x(u_I,v) [/mm]
[mm] =\bruch{\partial^r}{(\partial u^r )} \summe_{j=0}^n\summe_{i=0}^m b_{i,j} B_i^m (u_I) B_j^n [/mm] (v)
[mm] =\summe_{j=0}^n\bruch{\partial^r}{(\partial u^r )} \summe_{i=0}^m b_{i,j} B_i^m (u_I) B_j^n [/mm] (v)
= [mm] \summe_{j=0}^n [/mm] m*(m-1)*...*(m-r+1) [mm] \summe_{i=0}^{m-r} \Delta^{r,0} b_{i,j} B_i^{m-r}(u_I)B_j^n(v) [/mm]
[mm] =\summe_{j=0}^n [/mm] m*(m-1)*...*(m-r+1) [mm] \summe_{i=0}^{r} \Delta^{r,0} b_{m-i,j} B_i^{m-r}(u_I)B_j^n(v) [/mm]
= [mm] \summe_{j=0}^n [/mm] m*(m-1)*...*(m-r+1) [mm] \summe_{i=0}^{r} \Delta^{r,0} b_{m-i,j}\vektor{m-r \\ i} u_I^i (1-u_I )^i B_j^n(v) [/mm]
= [mm] \summe_{j=0}^n \summe_{i=0}^{r} \Delta^{r,0} b_{m-i,j}\vektor{m \\ i} u_I^i (1-u_I )^i B_j^n(v) [/mm]
? = [mm] \summe_{j=0}^n \bruch{1}{(u_I-u_{I-1})}^r \Delta^{r,0} b_{m-r,j} B_j^n(v) [/mm]

Wie gelange ich nun zu der Gleichung mit dem Fragezeichen?
Bin sehr dankbar für jeden Tipp!

        
Bezug
Bézierflächen C^r Bedingung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mi 13.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]