matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreAxiomatik der natürlichen Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - Axiomatik der natürlichen Zahl
Axiomatik der natürlichen Zahl < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Axiomatik der natürlichen Zahl: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 11:43 Di 15.05.2007
Autor: Sarah86

Aufgabe
Auch im Kardinalzahlaspekt können Rechenoperationen wie
Addition und Multiplikation folgendermaßen eingeführt werden:
Sei [mm]Omega[/mm] eine Menge endlicher Mengen und seien A, B [mm] \in \Omega [/mm].
Addition: a + b = [mm]\left I A \cup B\right I[/mm], falls [mm]A\ cap B\ =\emptyset[/mm]
Multiplikation: [mm]a * b = \left I A \times B\right I[/mm]
a) Warum muß man bei der Definition der Addition [mm]A \cap B\ =\ emptyset[/mm] voraussetzen? Erläutern Sie dies!
b) Beweisen Sie im Kardinalzahlaspekt mit Hilfe der Definitionen von Addition, Multiplikation und Gleichmächtigkeit von Mengen folgende Rechengesetze:
i) a + b = b + a ,
ii) [mm]a *b = b *a[/mm] ,
iii)[mm]a * ( b +c ) =a *b +a *c[/mm].

Hallo zusammen!
Ich muss für die Uni folgende Aufgabe lösen:

Zu a) denke ich, dass [mm]A \cap B\ =\ emptyset[/mm] vorausgesetzt werden müssen, weil A und B verschiedene Elemente enthalten muss. Wenn sie u.a. gleiche Elemente enthielten wäre 2+3 nicht 5 sondern vielleicht 3.
Mit der b) bin ich ziemlich überfordert.
i) wenn a + b = [mm]\left I A \cup B \right I[/mm], kann man das ja eigentlich einfach umdrehen. Aber mir scheint das nicht wirklich ein Beweis für die Aussage zu sein.
Bei ii) würd ich auch so vorgehen, sehe aber das gleiche Problem wie bei i)
Könnte man auch sagen, dass die Mengen [mm]\left I A \cup B \right I[/mm] und [mm]\left I B \cup A \right I[/mm] gleichmächtig sind, oder hab ich das falsch verstanden?

Danke schon mal für jeden Tipp, den ich bekomme.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Axiomatik der natürlichen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Di 15.05.2007
Autor: generation...x

Da [mm]A \cup B = B \cup A [/mm] und [mm]A \times B = B \times A [/mm] sind die resultierenden Mengen natürlich auch gleichmächtig. Aufgabenteil iii) funktioniert analog.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]