matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAuton. nichtlineare DGL 1.Ord.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Auton. nichtlineare DGL 1.Ord.
Auton. nichtlineare DGL 1.Ord. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auton. nichtlineare DGL 1.Ord.: Explizite Lösung?
Status: (Frage) beantwortet Status 
Datum: 19:59 Mo 15.12.2008
Autor: GEWE

Aufgabe
AWP: [mm] y'=1+y^{1/2}, [/mm] y(0)=0

Wie lautet/n die explizite(n) Lösungen des AWPs?

Mir ist klar, dass (mindestens) eine Lösung aufgrund der Stetigkeit von [mm] f(x,y)=1+y^{1/2} [/mm] existiert. Auch klar ist, dass die LP-Bedingung in keiner Umgebung von beliebigen Punkten [mm] (x_{0}, [/mm] 0) erfüllt ist. Theoretisch muss es also mehrere Lösungen geben...Wie berechnet man diese explizit? TdV führt auf das Integral: [mm] \integral_{}^{}{1/(1+ \wurzel{y})dy}. [/mm] Und dann? Da dies eine frühere (mdl.) Prüfungsfrage war. muss es eine (relativ) einfache Antwort geben...

Bem.: Man hat das gleiche "Problem" bei z.B. dem AWP [mm] y'=1+y^{4}, [/mm] y(0)=0, welches hier bereits an früherer Stelle diskutiert und mit TdV & PBZ auch gelöst wurde. Aber für eine knappe Antwort in einer Staatsexamensprüfung ist die Lösung eher ungeeignet, oder?. Hat jmd. vielleicht eine Idee, wie man eine derartige Prüfungsfrage elegant(er)/kürzer beantwortet?  


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Auton. nichtlineare DGL 1.Ord.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Do 25.12.2008
Autor: zetamy

Hallo,

wo liegt das Problem? Das Integral ist durch Substitution einfach zu lösen: Setze [mm] $z:=\sqrt{y}$, [/mm] dann ist [mm] $dz=\frac{dy}{2\sqrt{y}}$, [/mm] also [mm] $2z\cdot [/mm] dz= dy$. Somit:

$ [mm] \int \frac{1}{1+ \wurzel{y}}dy [/mm] = [mm] \int \frac{2z}{1+z}dz [/mm] $.

Jetzt noch partielle Integration (und das Standardintegral [mm] $\int [/mm] ln(ax+b) dx$ ) anwenden.


Gruß, zetamy



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]