matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeAuswahlaufgabe zur IMO Nr 2.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathematik-Wettbewerbe" - Auswahlaufgabe zur IMO Nr 2.
Auswahlaufgabe zur IMO Nr 2. < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auswahlaufgabe zur IMO Nr 2.: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 16:34 Sa 25.12.2004
Autor: Hanno

Hallo an alle!

Weiter geht's mit folgender Aufgabe:

Sei [mm] $F:=\{A_1,A_2,...,A_n\}$ [/mm] eine Menge von Teilmengen der Menge [mm] $S=\{1,2,...,n\}$ [/mm] mit den folgenden Eigenschaften:
a.) Je zwei der Mengen aus $F$ haben genau ein Element aus $S$ gemein.
b.) Jedes Element aus $S$ ist in genau $k$ der n Mengen aus $F$ enthalten.

Ist dies für n=1996 möglich?

Liebe Grüße und Viel Spaß,
Hanno

        
Bezug
Auswahlaufgabe zur IMO Nr 2.: Ansatz über Siebformel
Status: (Frage) beantwortet Status 
Datum: 20:10 Sa 25.12.2004
Autor: Hanno

Huhu!

Ich weiß nicht, ob die IMO-Kandidaten solche Formeln kennen müssen, aber ich hatte die Idee, hier von meiner Lieblingsformel, der Siebformel des Sylvester (auch als Prinzip der In- und Exklusion bekannt) Gebrauch zu machen. Die Formel lautet bekanntlich:

[mm] $\left\vert \bigcup_{i=1}^{n}{A_i}\right\vert=\summe_{r=1}^{n}{(-1)^{r-1}\cdot\summe_{L\subseteq \{1,2,...,n\}\atop |L|=r}\left\vert \bigcap_{l\in L}{A_l}\right\vert }$ [/mm]

Die linke Seite können wir für unser Beispiel zu $n$ vereinfachen. Wäre dem nämlich nicht so, dann gäbe es ein Element aus S, welches nicht keiner der n Mengen vorhanden wäre. Dann wäre allerdings $k=0$, die Mengen allesamt leer und somit könnten zwei beliebige Mengen nicht in genau einem Element übereinstimmen. Die linke Seite muss also gleich n sein.

Zur rechten Seite hatte ich mir folgendes überlegt:
Der Ausdruck [mm] $\summe_{L\subseteq \{1,2,...,n\}\atop |L|=r} \left\vert \bigcap_{l\in L} A_l\right\vert [/mm] $ kann zu [mm] $n\cdot\vektor{k\\ r}$ [/mm] vereinfacht werden. Dies liegt, so dachte ich, daran, dass es genau [mm] $\vektor{k\\ r}$ [/mm] r-elementige Teilmengen von F gibt, die r der k Mengen enthalten, die allesamt eines der Elemente aus S beinhalten. Nur dann ist nämlich die Kardinalität des Durchschnittes 1. Da es n verschiedene Elemente in S gibt, dachte ich also, dass die Summe zu [mm] $n\cdot\vektor{k\\ r}$ [/mm] vereinfacht werden könnte. Dies widerspricht aber dem Falle $r=2$, dann da zwei Mengen bekanntlich genau 1 ELement gemein haben, hat die Vereinigung immer die Kardinalität 1, die Summe hat also den Wert [mm] $\vektor{n\\ 2}$ [/mm] und nicht [mm] $n\cdot\vektor{k\\ 2}$, [/mm] wie in meiner vorangegangenen Überlegung.

Was ist da falsch bzw. was muss ich noch beachten?


Liebe Grüße,
Hanno

Bezug
                
Bezug
Auswahlaufgabe zur IMO Nr 2.: Das könnte die Lösung sein
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 So 26.12.2004
Autor: Hanno

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Huhu!!

Vielleicht ist meine Untersuchung des Termes $\summe_{L\subseteq \{1,2,...,n\}\atop |L|=2} \left \vert \bigcap_{l\in L} A_l \right\vert$ gar nicht so verkehrt! Denn wenn ich logisch begründen kann, warum er einerseits den Wert $\vektor{n\\ 2}$, andererseits aber auch $n\cdot\vektor{k\\2 }$ haben kann, dann folgt zusammen $\vektor{n\\ 2}=n\cdot\vektor{k\\2}\gdw n=k^2-k+1$.

Da 1996 aber nicht die Form $k^2-k+1$ hat, lässt sich keine Menge F mit den besagten Eigenschaften finden.

Was haltet ihr davon?

Liebe Grüße,
Hanno

Bezug
                        
Bezug
Auswahlaufgabe zur IMO Nr 2.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Fr 14.01.2005
Autor: Stefan

Lieber Hanno!

Ich wollte dir endlich mal auf deinen Lösungsvorschlag hier antworten.

Die Lösung ist absolut korrekt!! :-)

Einerseits ist die Summe der Anzahlen der Elemente der Durchschnitte aller Mengenpaare gleich ${n [mm] \choose [/mm] 2}$ (weil es eben so viele Möglichkeiten gibt diese Durchschnitte zu bilden und in jedem dieser Durchschnitte genau ein Element liegt), andererseits betrachten wir das "aus Sicht der Elemente" und bilden für jedes Element die Durchschnitte aller Mengenpaare aus den $k$ Teilmengen, in denen das Element enthalten ist.

Unglaublich, Hanno, da wäre ich niemals drauf gekommen, [respekt] [hut] [respekt]

Liebe Grüße
Stefan

Bezug
                                
Bezug
Auswahlaufgabe zur IMO Nr 2.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Fr 14.01.2005
Autor: Hanno

Huhu Stefan!

Danke für deine Antwort - das freut mich, dass die Lösung korrekt ist!

Allerdings war das wohl mehr Glück als Verstand. Ich habe eigentlich gedacht, ich könne meine heiß geliebte Siebformel anwenden und habe dann gemerkt, dass ich für den Fall n=2 Probleme bekomme - diese Probleme habe ich zuerst als Denkfehler interpretiert, bis ich dann darauf gekommen bin, dass daraus die notwendige Bedingung [mm] $\exists k\in \IN: n=k^2-k+1$ [/mm] folgt.

Aber naja, zum Ziel hat es geführt :)

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]