matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAussagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Aussagen
Aussagen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:03 Di 14.12.2004
Autor: Moe_Hammed

Hi!

Sitze an einer Aufgabe, bei der ich nicht genau weiß, was gemeint ist.
Gegeben ist eine Struktur <A, f, g, R, S, a, b> wobei f, g einstellige Funktionen, a, b Konstanten und R, S zweistellige Relationen.

Die Frage ist nun, welche der Folgenden Ausdrücke korrekt gebildet sind in den Variablen {x,y,z}:

(1) €=( [mm]\exists x[/mm] [mm]\forall y[/mm](R(x,a)->S(y,b))) [mm] \vee [/mm] ([mm]\exists x[/mm](f(y)=a))
(2) €=([mm]\forall x[/mm](x=x)->(q->([mm]\forall x[/mm](x=x)))
(3) €=[mm]\exists x[/mm][mm] ((x=y)\vee [/mm] ([mm]\forall R(a,f(y))[/mm]))
(4) €=[mm]\exists x[/mm](([mm]\exists y[/mm]R(a,z))->([mm]\forall z[/mm]S(z,y)))
(5) €=[mm]\exists x[/mm][mm]\forall y[/mm]S(f(z),g(z))^(f(R(a,z))=a)

Was ich nicht ganz verstehe ist die Frage nach ...korrekt in {x,y,z}

Wenn man sich die Ausdrücke ansieht, dann fällt auf, daß (2), (3) nicht richtig gebildet sind, da q nicht definiert ist (2) und bei (3) es heißen müsste [mm] \forall [/mm] Variable R.

An sich ist aber  (2) richtig in den var x,y,z -abgesehen vom q, da der Ausdruck richtig gebildet ist und x, y und z auch nicht definiert sind oder???  

danke Moe

        
Bezug
Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Di 21.12.2004
Autor: Stefan

Hallo!

Also, (3) und (5) sind definitiv falsch ((3) hast du begründet, bei (5) wird eine einstellige Funktion $f:A  [mm] \to [/mm] A$ auf ein Element aus $A [mm] \times [/mm] A$, nämlich $R(a,z)$, losgelassen.

Bei den anderen fehlen teilweise Klammern, aber da tippe ich eher auf Tippfehler. ;-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]