Aussagen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 21:54 Di 14.02.2017 | Autor: | knowhow |
Aufgabe | 1) Zwei verschiedene Gerade in [mm] K^2=K(i)=\{z=x+iy|x,y \in K\}\subseteq\IC, [/mm] K, ein bel. Körper, sind genau dann parallel, wenn sie überall den gleichen Abstabd haben.
2) Die Abb. [mm] \IC\rightarrow \IC, z\mapsto e^{-i\bruch{2\pi}{3}}z+2i+1 [/mm] ist im [mm] \IR^2 [/mm] die negative Drehung um 120° gefolgt von Verschiebung um (1,2)
Sei [mm] IP(A):IH(K)\rightarrow [/mm] IH(K), [mm] z\mapsto \bruch{az+b}{cz+d} [/mm] zu [mm] A=\pmat{ a & b \\ c & d } \in Sl_2(K), [/mm] K euklidisch, [mm] l_0 [/mm] die Imaginärachse in IH(K)
3) Jes IP(A) bildet eine hyperbolische Gerade vom Typ [mm] l_p [/mm] (parallele zur Imaginärachse) wieder auf eine hyperbolische Gerade vom typ [mm] l_{p'} [/mm] ab.
4) Die Gerade [mm] l_p [/mm] wird durch [mm] IP(\pmat{ 1 & -p \\ 0 & 1 }) [/mm] auf [mm] l_0 [/mm] abgebildet. |
Hallo,
ich habe einige Fragen zu diesen Aussagen warum sie gerade falsch bzw richtig sind. Könnte mir jemand diese erklären am besten wenn es ginge anhand eines bespiels? Dankeschön im voraus.
1) falsch
2) richtig
3) falsch
4) falsch
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:52 Fr 17.02.2017 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|