Ausfallwahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:25 Di 09.12.2014 | Autor: | Theb |
Aufgabe | (a) Drei Bauelemente [mm] B_1, B_2 [/mm] und [mm] B_3 [/mm] haben die Ausfallwahrscheinlichkeit 0,1.
[mm] A_i [/mm] sei der Ausfall des Elementes [mm] B_i; [/mm] 1 [mm] \le [/mm] i [mm] \le [/mm] 3. [mm] A_i, 1\le [/mm] i [mm] \le [/mm] 3 seien unabhängig. Die Schaltung aus diesen drei Bauelementen ist so aufgebaut, dass
die Gesamtschaltung mit [mm] P((A_1 \vee A_2)\wedge A_3) [/mm] ausfallt. Berechnen Sie die Wahrscheinlichkeit für den Ausfall. |
Hallo Liebe Gemeinde,
ich habe hierfür als Lösung p=0,02 gegeben, jedoch muss ich ja alle Fälle addieren bei denen die Schaltung ausfällt, und das wäre ja dann [mm] A_1 [/mm] und [mm] A_3, A_2 [/mm] und [mm] A_3 [/mm] und auch noch [mm] A_1 [/mm] und [mm] A_2. [/mm] Somit würde ich auf eine Rechnung von 3 * [mm] (0,1)^{2} [/mm] = 0,03 kommen. Also für [mm] P((A_1 \vee A_2)\wedge A_3) [/mm] = 0,03. Ist das soweit korrekt? bzw kann ich davon ausgehen, dass P=0,02 falsch ist?
Besten Dank im Voraus,
Seb
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:37 Mi 10.12.2014 | Autor: | andyv |
Hallo,
du sollst die Wahrscheinlichkeit dafür berechnen, dass [mm] $B_3$ [/mm] ausfällt und [mm] ($B_1$ [/mm] oder [mm] $B_2$).
[/mm]
Verwende dafür die Unabhängigkeit von [mm] $A_i$, [/mm] d.h. es gilt [mm] $P(A_i\cap A_j)=P(A_i)P(A_j)$ [/mm] falls [mm] $i\neq [/mm] j$ und damit [mm] $P(A_i \cup A_j)=2P(A_i)-P(A_i)^2$.
[/mm]
Liebe Grüße
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:52 Mi 10.12.2014 | Autor: | Theb |
Vielen Dank für deine Antwort.
Ich bekomme so als Lösung [mm] P(A_3\cap (A_1 \cup A_2)) [/mm] = [mm] P(A_3) \cdot (2P(A_1) [/mm] - [mm] P(A_1)^{2}) [/mm] = 0,019 -> 1,9%
Ist das so korrekt?
|
|
|
|
|
Im Prinzp ja, aber dass Du gleich [mm] $P(A_1)=P(A_2)$ [/mm] einsetzt, macht es schwieriger, das zu sehen.
Gruss,
Hanspeter
|
|
|
|