Ausdehn. v. Schnitten/Funktion < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Lemma:
Ist [mm] \mathcal{G} [/mm] eine Garbe über einem parakompakten Raum, so lässt sich jeder Schnitt über einer abgeschlossenen Menge ausdehnen auf eine offene Umgebung. |
Hallo,
dies ist ein Lemma, dass ich in einem Buch gefunden habe, dessen Beweis ich allerdings nicht ganz verstehe.
Vielleicht gilt das sogar allgemeiner für stetige Funktionen auf abgeschlossenen Mengen in parakompakten Räumen.
Sei s ein Schnitt über der abgeschlossenen Menge A, d.h. eine stetige Abbildung von A nach dem Garbenraum von [mm] \mathcal{G}, [/mm] sodass jedem Punkt ein Keim zugeordnet wird.
Dann wird gesagt, dass es eine lokal endliche offene Überdeckung durch Mengen [mm] U_{i} [/mm] von X gibt und Schnitte [mm] s_{i} [/mm] über diesen, die mit s auf [mm] A\cap U_{i} [/mm] übereinstimmen. (Warum gibt es die???) Da wird nichts weiter dazu gesagt, aber an solche kommt man doch bestimmt irgendwie mit einer Zerlegung der 1, ich weiß nur nicht wie.... Oder ist es noch viel klarer, als ich denke und ich sehe es einfach nur nicht?
Den Rest glaube ich, nachvollziehen zu können:
Dann schrumpft man die [mm] U_{i} [/mm] zu [mm] V_{i} [/mm] mit [mm] \overline{V_{i}}\subset U_{i} [/mm] und definiert sich die Menge [mm] W:=\{x\in X| x\in \overline{V_{i}}\cap\overline{V_{j}} \Rightarrow s_{i}(x)=s_{j}(x)\} [/mm] und zeigt, dass dies eine offene Umgebung ist, jetzt kann man die noch mit den [mm] V_{i} [/mm] schneiden, hat darauf die Schnitte allesamt definiert, die stimmen überein und man kann sie verkleben.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Mo 28.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|