matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungAufpunkte der Geradenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Aufpunkte der Geradenschar
Aufpunkte der Geradenschar < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufpunkte der Geradenschar: brauche hilfe dabei...
Status: (Frage) beantwortet Status 
Datum: 13:33 Mi 01.02.2006
Autor: The_Doctor

Aufgabe
Gegeben ist die Geradenschar  
g: [mm] \vec{x} [/mm] =  [mm] \vektor{4+3t \\ t \\ 4t-3 } [/mm]  + s [mm] \vektor{-3 \\ 2 \\ -4} [/mm] , s [mm] \in \IR [/mm] ; t [mm] \in \IR. [/mm]

a)
Die Aufpunkte der Geradenschar liegen selbst auf einer Geraden h. Geben Sie einen Aufpunkt und einen Richtungsvektor von h an.

b)
Bestimmen Sie eine Koordinatengleichung der Ebene E , in der alle Geraden der Schar enthalten sind.

c)
Welche Gerade der Schar hat minimalen Abstand vom Ursprung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

so nun meine fragen.

bei der aufgabe a) ist mein problem ich weiß nich was ein aufpunkt ist oder besser gesagt ich komm nicht mehr dadrauf was das ist hab meine hefter durchgewühlt hab aber leider nichts gefunden.

aufgabe b) ist ja dann kein problem wenn ich debn aufpunkt habe mache ich aus diesem punkt und der geraden dann die ebenengleichung und dann halt daraus die koordinatenform. liege ich da richtig?

und aufgabe c) ist dann einfach den abstand der schar mit dem Ursprung berechnen also hessesche normalform nehmen oder eine andere abstandberechnung einfach verwenden oder liege ich da falsch?


wäre nett wenn ihr mir weiter helfen könntet

Vielen Dank

MfG

The_Doctor

        
Bezug
Aufpunkte der Geradenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Mi 01.02.2006
Autor: Lolli


> Gegeben ist die Geradenschar  
> g: [mm]\vec{x}[/mm] =  [mm]\vektor{4+3t \\ t \\ 4t-3 }[/mm]  + s [mm]\vektor{-3 \\ 2 \\ -4}[/mm]
> , s [mm]\in \IR[/mm] ; t [mm]\in \IR.[/mm]
>  
> a)
> Die Aufpunkte der Geradenschar liegen selbst auf einer
> Geraden h. Geben Sie einen Aufpunkt und einen
> Richtungsvektor von h an.
>  
> b)
>  Bestimmen Sie eine Koordinatengleichung der Ebene E , in
> der alle Geraden der Schar enthalten sind.
>  
> c)
>  Welche Gerade der Schar hat minimalen Abstand vom
> Ursprung?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> so nun meine fragen.
>  
> bei der aufgabe a) ist mein problem ich weiß nich was ein
> aufpunkt ist oder besser gesagt ich komm nicht mehr dadrauf
> was das ist hab meine hefter durchgewühlt hab aber leider
> nichts gefunden.

Der Aufpunkt der Geraden ist der Stützvektor des gegebenen Punktes; also der Punkt, an dem die Gerade im Raum "angeheftet" ist.
In deiner Aufgabe ist es :  [mm] \vektor{4+3t\\t\\4t-3} [/mm] bei diesem aufpunkt handelt es sich also um eine Schar von Punkten im Raum.
Wie aus a) hervorgeht bildet diese Schar von Punkten eine neue Gearde h, die sich einfach bestimmen lässt, indem du dir Werte für den parameter t überlegst, daraus dann zwei Punkte bildest und eine Gerade aufstellst.

> aufgabe b) ist ja dann kein problem wenn ich debn aufpunkt
> habe mache ich aus diesem punkt und der geraden dann die
> ebenengleichung und dann halt daraus die koordinatenform.
> liege ich da richtig?

[ok]

> und aufgabe c) ist dann einfach den abstand der schar mit
> dem Ursprung berechnen also hessesche normalform nehmen
> oder eine andere abstandberechnung einfach verwenden oder
> liege ich da falsch?

[ok] Bestimmung des kleinsten Abstand zwischen 2 Punkten mit dem Verfahren, was dir am einfachsten fällt.

> wäre nett wenn ihr mir weiter helfen könntet
>  
> Vielen Dank
>  
> MfG
>  
> The_Doctor


mfg Lolli

Bezug
                
Bezug
Aufpunkte der Geradenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mi 01.02.2006
Autor: The_Doctor

wenn ich mir dann werte überlege dann hab ich zum bespiel für
den punkt:

[mm] \vektor{10 \\ 2 \\ 5} [/mm]

und den punkt

  [mm] \vektor{7 \\ 1 \\ 1} [/mm]

und hab ich für die gerade h das raus:

h:  [mm] \vec{x} [/mm] =  [mm] \vektor{10 \\ 2 \\ 5} [/mm] + t [mm] \vektor{-3 \\ -1 \\ -4} [/mm]

ist das so richtig? oder wie meinst du es?


Bezug
                        
Bezug
Aufpunkte der Geradenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mi 01.02.2006
Autor: Lolli


> wenn ich mir dann werte überlege dann hab ich zum bespiel
> für
>  den punkt:
>  
> [mm]\vektor{10 \\ 2 \\ 5}[/mm]
>  
> und den punkt
>  
> [mm]\vektor{7 \\ 1 \\ 1}[/mm]
>  
> und hab ich für die gerade h das raus:
>  
> h:  [mm]\vec{x}[/mm] =  [mm]\vektor{10 \\ 2 \\ 5}[/mm] + t [mm]\vektor{-3 \\ -1 \\ -4}[/mm]
>  
> ist das so richtig? oder wie meinst du es?

genauso hab ich's mir gedacht.  [ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]