matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Auflösung lineare Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Auflösung lineare Gleichung
Auflösung lineare Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösung lineare Gleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:56 So 03.08.2014
Autor: Anna_1990

Aufgabe
Hallo liebe Community,
da ich nächsten Dienstag eine für mich sehr wichtige Prüfung VWL schreibe und dort das Thema die Nash-Gleichgewichte ist, stocke ich nun an der Auflösung einer Formel.
Ausgangsformel ist folgende:

[mm] \frac{1-k}{2} \left(1-k-\frac{1-k}{2} \right)-E [/mm]


Meine Ideen:
ich wende und drehe mich und komm irgendwie nur auf folgendes Ergebnis:

[mm] \frac{1}{4} \left(1-6k-k^{2} \right) [/mm]  - E

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=544269

Als Ergebnis der Auflösung hat uns unser Dozent folgende Gleichung aufgeschrieben:
[mm] \left(\frac{1-k}{2} \right) [/mm] ^{2} -E

Wie kommt er darauf?

Vielen Dank schonmal.

        
Bezug
Auflösung lineare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 So 03.08.2014
Autor: fred97


> Hallo liebe Community,
>  da ich nächsten Dienstag eine für mich sehr wichtige
> Prüfung VWL schreibe und dort das Thema die
> Nash-Gleichgewichte ist, stocke ich nun an der Auflösung
> einer Formel.
> Ausgangsformel ist folgende:
>
> [mm]\frac{1-k}{2} \left(1-k-\frac{1-k}{2} \right)-E[/mm]
>
>
> Meine Ideen:
>  ich wende und drehe mich und komm irgendwie nur auf
> folgendes Ergebnis:
>  
> [mm]\frac{1}{4} \left(1-6k-k^{2} \right)[/mm]  - E
>  Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://www.matheboard.de/thread.php?threadid=544269
>  
> Als Ergebnis der Auflösung hat uns unser Dozent folgende
> Gleichung aufgeschrieben:
>  [mm]\left(\frac{1-k}{2} \right)[/mm] ^{2} -E
>  
> Wie kommt er darauf?

Setzen wir abkürzend a= [mm] \frac{1-k}{2}, [/mm] so ist

[mm]\frac{1-k}{2} \left(1-k-\frac{1-k}{2} \right)=a(2a-a)=a^2[/mm]

FRED


>  
> Vielen Dank schonmal.


Bezug
        
Bezug
Auflösung lineare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 So 03.08.2014
Autor: M.Rex

Hallo

Du hast doch, mit ein bisschen Bruchrechnung:

[mm] \frac{1-k}{2}\cdot\left(1-k-\frac{1-k}{2}\right)-E [/mm]
[mm] =\frac{1-k}{2}-\frac{k\cdot(1-k)}{2}-\left(\frac{1-k}{2} \right)^{2}-E [/mm]
[mm] =\frac{2-2k}{4}-\frac{2k-2k^{2}}{4}-\frac{1-2k+k^{2}}{4}-E [/mm]
[mm] =\frac{2-2k-2k+2k^{2}-1+2k-k^{2}}{4}-E [/mm]

Fasse nun den Zähler weiter zusammen, und denke am Ende an die binomischen Formeln.

Marius

Bezug
                
Bezug
Auflösung lineare Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 So 03.08.2014
Autor: Anna_1990

Vielen Dank! Ihr habt mir sehr geholfen! :)

Liebe Grüße Anna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]