matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeAufgabe #56 (?),(GEO)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathematik-Wettbewerbe" - Aufgabe #56 (?),(GEO)
Aufgabe #56 (?),(GEO) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #56 (?),(GEO): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 19:53 Sa 09.07.2005
Autor: Hanno

Hallo an alle!

O sei ein Punkt innerhalb des Dreieckes ABC. Die Höhen des Dreiecks seien AD,BE,CF. Ferner seien P,Q,R die Lotfußpunkte der Lote von O auf AD,BE,CF. Zeige, dass die Dreiecke PQR und ABC ähnlich sind.


Liebe Grüße,
Hanno


        
Bezug
Aufgabe #56 (?),(GEO): Tip [mit Konstruktion]
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 So 24.07.2005
Autor: Hanno

Hallo an alle!

Im Anhang findet ihr eine Konstruktion des Problemes, die eine "Kleinigkeit" beinhaltet, die schon Hinweise auf die Lösung des Problemes gibt: nämlich der Kreis durch PQRNO. Versucht doch bitte zu zeigen, dass PQRNO auf einem Kreis liegen müssen und versucht dann mit Hilfe von Peripheriewinkelsatz und ein wenig Übersicht zu zeigen, dass die Winkel in PQR gleich denen in ABC sind.

Nur Mut, das ist nicht schwierig! Immer daran denken, dass vier Punkte genau dann auf einem Kreis liegen, wenn gegenüberliegende Winkel supplementär sind, sich also zu 180° ergänzen.

[Dateianhang nicht öffentlich]


Liebe Grüße,
Hanno

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Aufgabe #56 (?),(GEO): Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 Sa 30.07.2005
Autor: Hanno

Hallo an alle!

Nun gut, dann löse ich das ganze mal auf:

Die Winkel [mm] $\angle [/mm] ORN, [mm] \angle [/mm] NQO$ sind rechte Winkel, folglich ist das Viereck $ORNQ$ ein Sehnenviereck. Gleiches gilt für die Winkel [mm] $\angle [/mm] ORN, [mm] \angle [/mm] NPO$, daher ist auch das Viereck $ORNP$ ein Sehnenviereck. Es folgt, dass die Punkte O,R,N,P,Q auf einem Kreis liegen, wie es auch schon die Konstruktion in den Tips andeutet. Nun folgt der Rest über den Peripheriewinkelsatz: einerseits [mm] $\angle RQP=\angle RNP=90°-\angle DCN=\angle [/mm] ABC$, andererseits [mm] $\angle PRQ=\angle PNQ=90°-\angle NBD=\angle [/mm] BCA$. Damit stimmen $PQR$ und $ABC$ in allen Winkeln überein, sind daher ähnlich, was zu zeigen war.


Nun, damit lassen wir die Aufgabe dann mal ruhen.

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]