Aufgabe #110 (GEO),(INMO) < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Übungsaufgabe) Übungsaufgabe | Datum: | 11:13 Mi 28.12.2005 | Autor: | Hanno |
Aufgabe | Der Inkreis des Dreieckes ABC berühre BC,CA,AB in K,L,M (in dieser Reihenfolge). Die Parallele zu LK durch A schneide MK in P, und die Parallele zu MK durch A schneide LK in Q. Man beweise: PQ halbiert sowohl AB als auch AC. |
Viel Spaß!
Liebe Grüße,
Hanno
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:24 Mi 28.12.2005 | Autor: | moudi |
Aufgabe | Der Inkreis des Dreieckes ABC berühre BC,CA,AB in K,L,M (in
dieser Reihenfolge). Die Parallele zu LK durch A schneide
MK in P, und die Parallele zu MK durch A schneide LK in Q.
Man beweise: PQ halbiert sowohl AB als auch AC. |
Hallo Hanno
Zuerst zeige ich, dass APMLQ ein Sehnenfünfeck ist, d.h. die Punkte P und Q liegen auf dem Umkreis des gleichschenkligen Dreiecks AML.
[mm] $\sphericalangle AML=\sphericalangle [/mm] MKL$, denn [mm] $\sphericalangle [/mm] AML$ ist Sehnentangentenwinkel zur Sehne LM des Inkreises und somit gleich gross wie der Peripheriewinkel [mm] $\sphericalangle [/mm] MKL$. Weil APKQ ein Parallelogramm ist ergänzen sich die Winkel [mm] $\sphericalangle AML=\sphericalangle MKL=\sphericalangle [/mm] PKQ$ und [mm] $\sphericalangle KQA=\sphericalangle [/mm] LQA$ auf 180°.
Deshalb ist AMLQ ein Sehnenviereck. Analog folgt auch, dass APML ein Sehnenviereck ist.
[Dateianhang nicht öffentlich]
Wegen QL [mm] $\parallel$ [/mm] AP ist APLQ ein gleichschenkliges Trapez, dessen Diagonal folglich gleich lang sind. Sei X der Diagonalenschnittpunkt. Es folgt dass XLQ ein gleichschenkliges Dreieck mit Basis LQ ist. Es ist ähnlich zum Dreieck XAP (klar) und auch ähnlich zum gleichschenkligen Dreick CLK (gleiche Basiswinkel, die Scheitelwinkel sind).
Wir haben daher drei ähnliche Dreiecke: [mm] $\triangle XAP\sim\triangle XLQ\sim\triangle [/mm] CLK$
Daraus folgt $AX: AP=LC: LK$ und daraus
[mm] $AX=\frac{AP\cdot LC}{LK}$
[/mm]
Weiter: $LQ:LK=LX:LC=k$ und daraus $KQ:LK=CX:LC=k+1$ und daraus
[mm] $CX=\frac{KQ\cdot LC}{LK}$
[/mm]
Bildet man nun das Verhältnis $AX:CX=AP:KQ=1$, da APKQ ein Parallelogramm ist. Daher ist X (=Schnittpunkt von PQ und AC) die Seitenmitte von AC. Der Rest folgt sofort, wenn man bemerkt, dass PQ parallel ist zu BC, was aus der Lage der ähnlichen Dreiecke XLQ und CLK sofort folgt.
mfG Moudi
fig1.gif
Dateianhänge: Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:30 Do 05.01.2006 | Autor: | Hanno |
Hallo Moudi!
Einmal mehr spitze!
Woher kannst du so gut Geometrie?
Liebe Grüße,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:46 Do 05.01.2006 | Autor: | moudi |
Hallo Hanno
Das habe ich alles in der Mittelschule (Gymnasium) gelernt.
"Zu meiner Zeit" führte die klassische Geometrie und darstellende Geometrie
noch kein Schattendasein.
mfG Moudi
|
|
|
|