matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Aufgabe
Aufgabe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe: Rang einer Matrix
Status: (Frage) beantwortet Status 
Datum: 23:04 Mi 06.07.2005
Autor: rscharrer

Hallo.

Komm bei folgender Aufgabe einfach nicht zu Rande. Hat mir schon einiges an Kopfzerbrechen bereitet, aber ich komm nicht drauf:

Sei A,B [mm] \in \IC^{nxn} [/mm] mit rg(A) = n-k und rg(B) = n-l. Zu beweisen:
rg(AB) [mm] \ge [/mm] n-k-l.
Zudem soll ein Beispiel angegeben werden für rg(AB) = n-k-l.

Ich denk mir es hat irgendwas mit dem Verhältnis zw. Rang und Dimension der  Matrizen zu tun.
Weiter keine Ahnung.

Vielen Dank im Voraus.

Gruß Roland

        
Bezug
Aufgabe: Tipp!
Status: (Antwort) fertig Status 
Datum: 23:33 Mi 06.07.2005
Autor: taura

Hallo Roland!

Versuch mal über den Rang (Dimension des Bildes) der zugehörigen Abbildungen zu argumentieren! Was passiert nämlich, wenn du zwei entsprechende Abbildungen verknüpfst? Kommst du damit weiter?

Gruß Biggi

Bezug
                
Bezug
Aufgabe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:50 So 10.07.2005
Autor: rscharrer

Hallo.
Kann damit im Moment leider nichts anfangen. Komm da einfach nicht weiter.
Weiß das ich die Dimension des Bildraums betrachten muss. Aber wie?

Weiß einfach nicht, wie ich da eine stimmige Argumentationskette aufbaue.

Gruß Roland

Bezug
                        
Bezug
Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Mo 11.07.2005
Autor: Julius

Hallo!

Man könnte etwa so argumentieren:

$rg(AB)$

[mm] $=\dim(Bild(AB))$ [/mm]

[mm] $=\dim(Bild(A|_{Bild(B)}))$ [/mm]

[mm] $=\dim(Bild(B)) [/mm] - [mm] \dim(Kern(A|_{Bild(B)}))$ [/mm]

$=n-1 - [mm] \dim(Kern(A|_{Bild(B)}))$ [/mm]

[mm] $\ge [/mm] n-1 - [mm] \dim(Kern(A))$ [/mm]

$=n-1-k$,

was zu zeigen war.

Viele Grüße
Julius

Bezug
                                
Bezug
Aufgabe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:34 Mo 11.07.2005
Autor: rscharrer

Soweit komme ich mit. Nur die Dimensionsrechnung ist mir nicht so geläufig:

Was bedeutet oder wie interpretiert man dim(Bild(A|Bild(B))? verstehe hier die  Notation mit dem | nicht.

gruß Roland


Bezug
                                        
Bezug
Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mo 11.07.2005
Autor: taura

Hallo Roland!

Die Notation [mm]A|_{Bild(B)}[/mm] bedeutet A eingeschränkt auf das Bild von B, sprich:
[mm]A|_{Bild(B)}: Bild(B) \to V; v \mapsto A(v) [/mm]
Es handelt aich also um die gleiche Abbildungsvorschrift, nur werden jetzt nicht mehr alle v aus V abgebildet, sondern nur noch alle v aus Bild(B). Und genau die brauchst du ja auch nur für deine Verknüpfung, denn du bildest dort ja unter A nur ab, was unter B "angekommen" ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]