matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastik-SonstigesAufg. zur Sigmaregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik-Sonstiges" - Aufg. zur Sigmaregel
Aufg. zur Sigmaregel < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufg. zur Sigmaregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:59 Mi 13.04.2011
Autor: zitrone

Guten Abend!

ich hab da paar Aufgaben, bei denen ich nicht wirklich weiß, wie es weitergeht...
Könnte sich das daher jemand angucken und mir bitte helfen??


1. Text unwichtig, dafür Teilaufg, b.: berechnen sie die Schwankungsbreite auch in Prozent.

Die Schwankungsbreite ist ja die Standartabweichung im min und max Bereich. Diese habe ich ausgerechnet:
min 181,8 ; max 202,2
wenn ich das mal 100 nehme, bekomme ich etwas weit über 100... Gibt es eine andere Möglichkeit oder hatte ich einen Denkfehler, weil ich dachte die Standartabweichung würde reichen?

Aufg.2:
Eine Autofirma gibt 2 Jahre Garantie. Ein Garantiefall kostet der Firma durchschnittlich 350€. Man rechnet erfahrungsgemäß mit 7% Garantiefällen in den 2 Jahren. In 2 Jahren wurden 13400 Autos verkauft. Mit welchem Kostenrahmen muss die Firma wegen der Garantie mit 0,99 P rechnen?

Antw.:
Ich habe zunächst den Erwartungswert berechnet und diesen dann mal 350€ genommen, da es um das Geld geht.
Dann hab ich diesen Wert benutzt, um die Standartabweichung zu bestimmen. Mit dem gings dann weiter, um die Wahrscheinlichkeit mit 0,99 zu berechnen.

Ist mein Gedankengang so korrekt gewesen?

lg zitrone

        
Bezug
Aufg. zur Sigmaregel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Do 14.04.2011
Autor: Al-Chwarizmi


> 1. Text unwichtig, dafür Teilaufg, b.: berechnen sie die
> Schwankungsbreite auch in Prozent.
>  
> Die Schwankungsbreite ist ja die Standartabweichung

es heißt:  "Standardabweichung" !
(eine []"Standarte" ist eine Art Fahne ...)
  

> im min und max Bereich. Diese habe ich ausgerechnet:
>  min 181,8 ; max 202,2
>  wenn ich das mal 100 nehme, bekomme ich etwas weit über
> 100... Gibt es eine andere Möglichkeit oder hatte ich
> einen Denkfehler, weil ich dachte die Standartabweichung
> würde reichen?

Eine solche Abweichung in Prozent rechnet man
vom Mittelwert aus, der als 100% gesetzt wird !

  

> Aufg.2:
>  Eine Autofirma gibt 2 Jahre Garantie. Ein Garantiefall
> kostet der Firma durchschnittlich 350€. Man rechnet
> erfahrungsgemäß mit 7% Garantiefällen in den 2 Jahren.
> In 2 Jahren wurden 13400 Autos verkauft. Mit welchem
> Kostenrahmen muss die Firma wegen der Garantie mit 0,99 P
> rechnen?
>  
> Antw.:
>  Ich habe zunächst den Erwartungswert berechnet und diesen
> dann mal 350€ genommen, da es um das Geld geht.
>  Dann hab ich diesen Wert benutzt, um die
> Standartabweichung zu bestimmen. Mit dem gings dann weiter,
> um die Wahrscheinlichkeit mit 0,99 zu berechnen.
>  
> Ist mein Gedankengang so korrekt gewesen?
>  
> lg zitrone


Hallo zitrone,

zeig doch zur zweiten Aufgabe deinen genauen Rechenweg,
damit man deine Lösung wirklich beurteilen kann !

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]