matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe-SoftwareAuf linearität prüfen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe-Software" - Auf linearität prüfen
Auf linearität prüfen < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auf linearität prüfen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:05 Sa 25.11.2006
Autor: KnockDown

Aufgabe
Entscheiden Sie, welche der folgenden 6 Abbildungen linear sind und begründen Sie ihre Antwort.

1) $F: [mm] \IR^3 \to \IR^4$ [/mm]

mit $F [mm] \vektor{ \vektor{x \\ y \\ z} } [/mm] := [mm] \vektor{x+y \\ x+z \\ z-x \\ z-y}$ [/mm]

Hi, wie kann ich . mit einer Mathesoftware (bevorzugt: Dervice) solche einen Vektor auf Linearität prüfen?

Ich beziehe mich dabei auf d i e s e n  B e i t r a g von mir. Ich habe das ganze mit der Hand durchgerechnet, komme jedoch laut meiner Rechnungen darauf, dass jeder Vektor linear ist und ich glaube das nicht so ganz, deshalb möchte ich mich nochmal selbst überprüfen können und falls ich sehe, dass das Programm etwas anderes herausbekommt als ich, möchte ich diese Aufgabe wiederholt rechnen!


Könnt ihr mir erklären wie das funktioniert?



Danke!


Gruß Thomas


        
Bezug
Auf linearität prüfen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 30.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]