matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAuf Kompaktheit überprüfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Auf Kompaktheit überprüfen
Auf Kompaktheit überprüfen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auf Kompaktheit überprüfen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:03 So 17.05.2009
Autor: Giancoli

Aufgabe
Aufgabe 4: Welche der folgenden Mengen K des metrischen Raumes (X,d) sind kompakt?
a) Rn mit der Standardmetrik, K = {a}∪{an, n ∈ N}, wobei (an)n∈N ∈ Rn eine konvergente Folge mit Grenzwert a ist.
b) R2 mit der Standardmetrik, K = {(x, y) ∈ R2, x2 +y2 = 1}∩{(x, y) ∈ R2 , y ≤0}.
c) R2 mit der Standardmetrik, Kf ={(x, f (x)) ∈R2, x ∈(a,b), f : (a,b)→Rstetig}.
d) R2 mit der Metrik d(x, y) = 0, wenn x = y und d(x, y) = 1, sonst, K = {1
n , n ∈ N}∪{0}.

Ich grüße euch matheraum community!
Bräuchte eure Hilfe bei dieser Aufgabe. a) und b) hab ich soweit, aber bei c) und d) komme ich einfach nicht weiter.
Ich muss ja überprüfen ob diese Mengen kompakt sind. Dies ist gegeben, wenn sie beschränkt und abgeschlossen sind. Nun wüsste ich nicht ich dies bei c) untersuchen sollte :/
Für die Beschränktheit gilt ja allgemein, dass es eien untere und obere Schranke geben sollte, aber genau zeig ich das. Die gleiche Schwierigkeit hab ich bei der Prüfung auf Geschlossenheit. Auch hier kenne ich die allgemeine Definition: Eine Menge K ist abgeschlossen, wenn [mm] R²\K [/mm] offen ist. Aber ich weiß einfach nicht wie ich vorgehen muss. Genau so bei d)

Würde mich sehr über eure Hilfe freuen. Bräuchte die Lösung leider ziemlich zügig, wäre euch also sehr dankbar, wenn ihr mir ein bisschen entgegenkommt und konkret einige Lösungswege aufschreibt. Sitze schon den gnazen Tag an diesen Aufgaben :(

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: [http://www.matheplanet.com/default3.html?call=article.php?sid=1192&mode=&order=0&ref=http%3A%2F%2Fwww.google.de%2Fsearch%3Fhl%3Dde%26q%3Dnormierte%2BVektorr%25C3%25A4ume%2B%252B%2Bbeschr%25C3%25A4nktheit%2Bnachpr%25C3%25BCfen%26btnG%3DGoogle-Suche%26meta%3D%26aq%3Df%26oq%3D]

        
Bezug
Auf Kompaktheit überprüfen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 21.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]