matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAsymptote
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Asymptote
Asymptote < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptote: Rest der Polynomdivision
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 19.04.2005
Autor: Kirke85

Wenn man bei den Asymptoten das Verhalten für [mm] x\to \pm \infty [/mm] bestimmen will, so schaut man sich ja den Grad Z(x) und N(x) an. Wenn Z(x)>N(x) ist, muss man eine Polynomdivision durchführen. Dieses habe ich auch getan, für die Aufgabe:
(x²-3x+4):(3x-3)= [mm] \bruch{1}{3}x- \bruch{2}{3}+ \bruch{2}{3x-3} [/mm]
Dann ist ja [mm] \bruch{1}{3}x- \bruch{2}{3} [/mm] die Asymptote.
Welche Bedeutung hat aber nun der Rest, also [mm] \bruch{2}{3x-3} [/mm] , bzw. was sagt dieser Rest aus?

        
Bezug
Asymptote: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Di 19.04.2005
Autor: Zwerglein

Hi, Kirke,

das ist rechnerisch die Differenz zwischen den Termen der gegebenen Funktion und der Asymptote,
anschaulich ist das sozusagen der (in y-Richtung gemessene) "Abstand" zwischen dem Graphen von f und der Asymptote. Dieser Abstand wird für immer größere x selbst immer kleiner, da sich ja der Graph der Asymptote nähert.
Der sog. "Rest" bei der Polynomdivision geht für x [mm] \to \infty [/mm] gegen 0.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]