matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesArithmetik Wiederholung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Arithmetik Wiederholung
Arithmetik Wiederholung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithmetik Wiederholung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Fr 11.01.2008
Autor: Nemesis_Pandor

Aufgabe
Berechnen Sie x und stellen Sie das Ergebnis in Form eines echten Bruchs dar.

[mm] x=(\bruch{1}{3}-0,\bar6 )*(\bruch{11}{9}*\bruch{3}{22}-\bruch{\bruch{121}{3}}{\bruch{11}{6}}*\bruch{5-8}{33}+\bruch{10}{3}*0,\bar1+\bruch{17}{27})*\produkt_{i=4}^{n}i*\bruch{0,8\bar3}{n!} [/mm]

Hallo!
Die Aufgabe stammt aus einer Sammlung für das 1. Semester BWL und soll der Wiederholung der Arithmetik dienen. Da Kenntnisse in Arithmetik (verständlicherweise) vorausgesetzt werden, wurde das Kapitel nicht in Vorlesungen behandelt. Leider habe ich in der Schule nie etwas von Fakultäten und Produktzeichen gehört. Ich habe mich also mal online eingelesen und möchte wissen ob ich alles richtig verstanden habe. So würde ich die Aufgabe lösen:

  [mm] x=-\bruch{1}{3}*(\bruch{1}{6}-\bruch{110}{33}-\bruch{8}{33}+\bruch{10}{27}+\bruch{17}{27})*\bruch{0,8\bar3}{\produkt_{i=1}^{4}i} [/mm]
  [mm] x=-\bruch{1}{3}*(\bruch{1}{6}-\bruch{118}{33}+1)*\bruch{0,8\bar3}{24} [/mm]

  [mm] x=-\bruch{1}{3}*(-\bruch{74}{33})*\bruch{5}{144}=-\bruch{370}{14256}=-\bruch{185}{7128}[/mm]

meine Fragen:

1. Habe ich das mit dem Produktzeichen richtig verstanden? Kann ich das so kürzen?
2. Kann es sein dass diese Schreibweise [mm]\bruch{5-8}{33}[/mm] sich so auswirkt wie Klammern? Dann müsste es lauten [mm]-22*(-\bruch{3}{33})[/mm] und ich hätte einen "bequemeren" Nenner.


Vielen Dank für euer Wissen!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Arithmetik Wiederholung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Fr 11.01.2008
Autor: DaReava

Hallo!
Ich werde keine vollständige Antwort verfassen, aber kurz (wie ich hoffe) alle wichtigen Stellen klären.

[mm] x=(\bruch{1}{3}-0,\bar6 )\cdot{}(\bruch{11}{9}\cdot{}\bruch{3}{22}-\bruch{\bruch{121}{3}}{\bruch{11}{6}}\cdot{}\bruch{5-8}{33}+\bruch{10}{3}\cdot{}0,\bar1+\bruch{17}{27})\cdot{}\produkt_{i=4}^{n}i\cdot{}\bruch{0,8\bar3}{n!} [/mm]

Es gilt:
[mm] \produkt_{i=4}^{n}=(4*5*...*n) \qquad und \qquad n!=(1*2*...*n) [/mm]
Also [mm] \produkt_{i=4}^{n}i\cdot{}\bruch{0,8\bar3}{n!}=\bruch{5}{6}*\bruch{4*5*6*...*n}{1*2*3*4*5*6*...*n}=\bruch{5}{6}*\bruch{1}{1*2*3}=\bruch{5}{6}*\bruch{1}{6} [/mm]

Ausserdem gilt:
[mm] \bruch{\bruch{121}{3}}{\bruch{11}{6}}=\bruch{121}{3}*\bruch{6}{11} [/mm]
[mm] \bruch{5-8}{33} = \bruch{(5-8)}{33} [/mm]

Ich hoffe damit ist alles halbwegs klar geworden.
LG reava

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]