matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikArbeit, Linienintegrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Arbeit, Linienintegrale
Arbeit, Linienintegrale < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arbeit, Linienintegrale: Vorzeichen und Deutung
Status: (Frage) beantwortet Status 
Datum: 14:27 So 12.02.2012
Autor: murmel

Aufgabe
Welche Arbeit muss man aufbringen(!), um eine Masse $m$ im Kraftfeld von

[mm](a)[/mm] [mm] \quad[/mm]  [mm]\vec F = F_0 \left( \bruch{y}{a_0} + 1, 1, 0 \right)[/mm],

auf einer geraden Linie vom Punkt [mm] $P_1 [/mm] = (0, 0, 0)$ zum Punkt [mm] $P_2 [/mm] = [mm] (a_0, a_0, [/mm] 0)$ zu befördern?

Ist eine Änderung dieser Arbeit zu erwarten, wenn die Masse auf einem anderen Weg von [mm] $P_1$ [/mm] nach [mm] $P_2$ [/mm] befördert
wird? Begründen Sie (kurz) Ihre Antwort.



Hallo,


und wieder einmal ein Verständnisproblem in der Aufgabe!
Ich habe "aufbringen" mit einem Ausrufezeichen versehen, da ich rechnerisch und vom physikalischen Verständnis her nicht auf "aufgebrachte" Arbeit komme.

Mein Rechenweg:


[mm] \emph{Erster Schritt}-----------------\emph{Parametrisierung des Ortsvektors} [/mm]

[mm]\vec r = \begin{pmatrix} \alpha \\ \alpha \\ 0 \end{pmatrix}[/mm]


[mm] \emph{Zweiter Schritt}---------------\emph{Ableiten des parametrisierten Ortsvektors} [/mm]

[mm] \mathrm{d} \vec r = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mathrm{d} \alpha[/mm]


[mm] \emph{Dritter Schritt}---------------\emph{Das Skalarprodukt im Arbeitsintegral aus Kraftfeld und infinitisimaler Wegänderung bilden} [/mm]

[mm] W:= - \int F_0 \left( \bruch{y}{a_0} + 1, 1, 0 \right)\circ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mathrm{d} \alpha = \left[F_0 \bruch{y}{a_0} + F_0 + F_0\right] \mathrm{d} \alpha \qquad \gdw \qquad W:= - \int \left[F_0 \bruch{y}{a_0} + 2F_0\right] \mathrm{d} \alpha [/mm]



[mm] \emph{Vierter Schritt}---------------\emph{Variable entsprechend durch Parameter ersetzen} [/mm]

[mm] W:= - \int \left[F_0 \bruch{\alpha}{a_0} + 2F_0\right] \mathrm{d} \alpha [/mm]

[mm] \emph{Fünfter Schritt}---------------\emph{Integrieren um die Arbeit zu erhalten} [/mm]

[mm] W := - \left[F_0 \bruch{ \alpha^2}{2a_0} + 2F_0\,\alpha\right]^{a_0}_0 \quad = \quad - F_0 \bruch{a_0^2}{2a_0} - 2F_0\,a_0 \quad = \quad - \bruch{1}{2}F_0\,a_0 - 2F_0\,a_0[/mm]


[mm] \emph{----------------Fertig------------------} [/mm]

Der zweite Teil der Aufgabe interessiert (mich) hier nicht!

Wenn ich nun von der Definition des Arbeitsintegrals ausgehe, ist das Resultat keine aufgebrachte sondern vom System "freiwillig geleistete" Arbeit!

$W>0$ per Def.: Arbeit muss aufgewendet werden!
$W<0$ per Def.: Arbeit wird vom System verrichtet!

Was habe ich vergessen/ falsch gemacht?


Danke für eure Hilfe schon einmal im Voraus!

        
Bezug
Arbeit, Linienintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 12.02.2012
Autor: Event_Horizon

Hallo!

Es ist nicht klar, ob Arbeit geleistet oder aufgenommen wird, weil der genaue Ort nicht bekannt ist.  [mm] a_0 [/mm] könnte negativ sein!

Deine Definition ist völlig korrekt, und ich glaube, du hängst dich zu sehr an dem gewählten Wort auf. Wenn negative Energie aufgebracht wird, heißt das eben, daß Energie gewonnen wird.

Es ist oft so, daß man erstmal ne Richtung festlegt, um überhaupt rechnen zu können. Die wahre Richtung ergibt sich dann erst bei der Rechnung.


Bezug
                
Bezug
Arbeit, Linienintegrale: Oh
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 So 12.02.2012
Autor: murmel

Hallo,
> Es ist nicht klar, ob Arbeit geleistet oder aufgenommen
> wird, weil der genaue Ort nicht bekannt ist.  [mm]a_0[/mm] könnte
> negativ sein!

danke, daran habe ich gar nicht gedacht! xD


Gruß
Murmel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]