matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationApprox.von Lipschitz-Fkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Approx.von Lipschitz-Fkt
Approx.von Lipschitz-Fkt < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approx.von Lipschitz-Fkt: suche Satz
Status: (Frage) überfällig Status 
Datum: 12:19 Sa 22.09.2012
Autor: Balendilin

Hallo,

meine Frage ist eigentlich bloß ganz kurz - ich muss bloß wissen, ob es einen entsprechenden Satz gibt oder nicht ;-)


Gegeben ist eine Lipschitzfunktion f: [mm] \IR^n\rightarrow\IR^m [/mm] .
Ich habe bereits einen Satz gefunden, dass ich dann f durch eine Folge von [mm] C^1-Funktionen [/mm] approximieren kann. Kann ich aber f sogar durch eine Folge von [mm] C^\infty-Funktionen [/mm] (uniform) approximieren? D.h. gibt es eine Folge [mm] (f_i) [/mm] glatter Funktionen, sodass für alle i und für alle [mm] \epsilon>0 [/mm] gilt: [mm] \sup||f(x)-f_i(x)||<\epsilon [/mm]

Danke! :-)



PS: Noch ne blöde Verständnisfrage: "uniforme Konvergenz" und "gleichmäßige Konvergenz" sind das selbe, oder?

        
Bezug
Approx.von Lipschitz-Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 24.09.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]