matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAnzahl der Nullstellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Anzahl der Nullstellen
Anzahl der Nullstellen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Nullstellen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:30 So 16.07.2017
Autor: studiseb

Aufgabe
Bestimme die Anzahl der Nullstellen von [mm] f(z)=z^5+iz^3-4z+i [/mm] in {1<|z|<2}.

Hallo Freunde der komplexen Zahlen,

mir fehlt die zündende Idee wie ich die obige Aufgabe sinnvoll behandeln kann und freue mich über Tipps und Lösungsansätze :-)

Der Fundamentalsatz sagt ja dass ich bei einem Polynom vom Grad 5 in [mm] \IC [/mm] fünf Nullstellen haben muss. Jetzt stellt sich also nur die Frage, wie ich feststellen kann, welche dieser 5 Nullstellen auch die Eigenschaft 1<|z|<2 erfüllen. Dafür bräuchte ich Eure hilfe. DANKE!

        
Bezug
Anzahl der Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 So 16.07.2017
Autor: HJKweseleit

Versuchs mal mit dem Satz von Rouché. (Wickipicki oder so)

Bezug
        
Bezug
Anzahl der Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Mo 17.07.2017
Autor: M.Rex

Halllo

Hast du denn schon die fünf Nullstellen bestimmt? Wenn ja, musst du doch nur noch den Betrag dieser Nullstellen berechnen.

Marius

Bezug
        
Bezug
Anzahl der Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Di 18.07.2017
Autor: HJKweseleit


> Bestimme die Anzahl der Nullstellen von [mm]f(z)=z^5+iz^3-4z+i[/mm]
> in {1<|z|<2}.

Satz von Rouché anwenden.

Mach so:

Für |z|=1 bilde g(z)=-4z, [mm] h(z)=z^5+iz^3+i [/mm]

Es ist |g(z)|=|-4z|=4|-z|=4  und [mm] |h(z)|\le |z|^5+|i|^3|z|^3+|i|=1+1+1=3, [/mm] also |h(z)|<|g(z)|.

Damit haben g und f=g+h gleich viele Nullstellen im Kreis mit |z|=1. g hat dort nur eine Nullstelle z=0, f somit auch (aber woanders).

Für |z|=2 bilde [mm] g(z)=z^5, h(z)=iz^3-4z+i [/mm]

Es ist [mm] |g(z)|=|z|^5=32 [/mm]  und [mm] |h(z)|\le |i|^3|z|^3+|-4z|+|i|=8+8+1=17, [/mm] also |h(z)|<|g(z)|.

Damit haben g und f=g+h gleich viele Nullstellen im Kreis mit |z|=2. g hat dort eine 5-fach Nullstelle z=0, f somit auch (aber woanders).

Mehr Nullstellen hat f nicht. 4 liegen im angegebenen Kreisring und eine im Innenkreis. Wie sie heißen, ist dabei uninteressant.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]