matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenAnwendung der Determinante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Anwendung der Determinante
Anwendung der Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung der Determinante: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 14:52 So 05.05.2013
Autor: M-unit

Aufgabe
Betrachte V = [mm] K_{2} [/mm] als K-Vektorraum. Sei B [mm] \in [/mm] V eine fest gewählte Matrix.
Definiere [mm] L_{B} [/mm] : V [mm] \to [/mm] V durch [mm] L_{B}A [/mm] = BA für alle A [mm] \in [/mm] V
Gib eine geordnete Basis von V an und den Koordinatenvektor zu A [mm] \in [/mm] V bezüglich dieser Basis.
Zeige [mm] L_{B} \in [/mm] Hom(V,V) und det [mm] L_{B} [/mm] = (det [mm] B)^{2} [/mm]

Hallo Leute, ich muss diese Aufgabe lösen, aber weiss nicht wo ich anfangen soll. Kann mir bitte jemand weiterhelfen.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anwendung der Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 So 05.05.2013
Autor: angela.h.b.


> Betrachte V = [mm]K_{2}[/mm] als K-Vektorraum. Sei B [mm]\in[/mm] V eine fest
> gewählte Matrix.
> Definiere [mm]L_{B}[/mm] : V [mm]\to[/mm] V durch [mm]L_{B}A[/mm] = BA für alle A [mm]\in[/mm]
> V
> Gib eine geordnete Basis von V an und den
> Koordinatenvektor zu A [mm]\in[/mm] V bezüglich dieser Basis.
> Zeige [mm]L_{B} \in[/mm] Hom(V,V) und det [mm]L_{B}[/mm] = (det [mm]B)^{2}[/mm]
> Hallo Leute, ich muss diese Aufgabe lösen,

Hallo,

was ist denn mit [mm] K_2 [/mm] gemeint?
Der VR der [mm] 2\times [/mm] 2-Matrizen über K?
Ich gehe mal davon aus.

> aber weiss
> nicht wo ich anfangen soll.

Ich würde erstmal genau das tun, wozu Du aufgefordert wirst:
eine Basis [mm] \mathcal{B} [/mm] von V angeben. Und?

Wenn wir nun haben [mm] A=\pmat{a_1_1&a_1_2\\a_2_1&a_2_2}, [/mm] wie lautet dann der Koordinatenvektor von A bzgl. [mm] \mathcal{B}? [/mm]

Egal ob Du Basis und Koordinatenvektor hast oder nicht, könntest Du vorrechnen, daß [mm] L_B [/mm] ein Homomorphismus ist. Was ist dafür zu zeigen?
Und warum bildet er in die Menge V ab?

Für die Determinante brauchst Du die Darstellungsmatrix bzgl. [mm] \mathcal{B}. [/mm]

Berechne dafür zunächst die Bilder der Basisvektoren von [mm] \mathcal{B}. [/mm]

Wenn Du das hast, kannst Du die Darstellungsmatrix aufstellen.  
Deren Determinante ist die Determinante von [mm] L_B. [/mm]

LG Angela


> Kann mir bitte jemand
> weiterhelfen.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Anwendung der Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 So 05.05.2013
Autor: M-unit


> > Betrachte V = [mm]K_{2}[/mm] als K-Vektorraum. Sei B [mm]\in[/mm] V eine
> fest
>  > gewählte Matrix.

>  > Definiere [mm]L_{B}[/mm] : V [mm]\to[/mm] V durch [mm]L_{B}A[/mm] = BA für alle A

> [mm]\in[/mm]
>  > V

>  > Gib eine geordnete Basis von V an und den

>  > Koordinatenvektor zu A [mm]\in[/mm] V bezüglich dieser Basis.

>  > Zeige [mm]L_{B} \in[/mm] Hom(V,V) und det [mm]L_{B}[/mm] = (det [mm]B)^{2}[/mm]

>  > Hallo Leute, ich muss diese Aufgabe lösen,

>  
> Hallo,
>  
> was ist denn mit [mm]K_2[/mm] gemeint?
>  Der VR der [mm]2\times[/mm] 2-Matrizen über K?
>  Ich gehe mal davon aus.
>  
> > aber weiss
>  > nicht wo ich anfangen soll.

>  
> Ich würde erstmal genau das tun, wozu Du aufgefordert
> wirst:
>  eine Basis [mm]\mathcal{B}[/mm] von V angeben. Und?
>  
> Wenn wir nun haben [mm]A=\pmat{a_1_1&a_1_2\\a_2_1&a_2_2},[/mm] wie
> lautet dann der Koordinatenvektor von A bzgl. [mm]\mathcal{B}?[/mm]

Hey, also ich wähle einen beliebigen Koordinatenvektor, wie z.B. [mm] \vektor{\alpha \\ \beta}, [/mm] den ich weiter folgender Maßen umforme: [mm] \pmat{ a & b \\ c & d } [/mm] * [mm] \vektor{\alpha \\ \beta} [/mm]
Wäre es jetzt richtig?

> Egal ob Du Basis und Koordinatenvektor hast oder nicht,
> könntest Du vorrechnen, daß [mm]L_B[/mm] ein Homomorphismus ist.
> Was ist dafür zu zeigen?

Ich muss zeigen, dass [mm]L_B[/mm] (v1 + v2)= [mm]L_B[/mm] (v1) + [mm]L_B[/mm] (v2) und [mm]L_B[/mm] [mm] (\alpha*v) [/mm] = [mm] \alpha*[/mm]  [mm]L_B[/mm] (v) ist, oder?

>  Und warum bildet er in die Menge V ab?

Das verstehe ich leider nicht...

>  
> Für die Determinante brauchst Du die Darstellungsmatrix
> bzgl. [mm]\mathcal{B}.[/mm]
>  
> Berechne dafür zunächst die Bilder der Basisvektoren von
> [mm]\mathcal{B}.[/mm]

Wie soll ich das machen? Soll ich mir eine beliebige Matrix dafür aussuchen?

> Wenn Du das hast, kannst Du die Darstellungsmatrix
> aufstellen.  
>  Deren Determinante ist die Determinante von [mm]L_B.[/mm]
>  
> LG Angela
>  
>
> > Kann mir bitte jemand
>  > weiterhelfen.

>  >
>  > Ich habe diese Frage in keinem Forum auf anderen

>  > Internetseiten gestellt.

Bezug
                        
Bezug
Anwendung der Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 So 05.05.2013
Autor: angela.h.b.


> > > Betrachte V = [mm]K_{2}[/mm] als K-Vektorraum. Sei B [mm]\in[/mm] V eine
> > fest
> > > gewählte Matrix.
> > > Definiere [mm]L_{B}[/mm] : V [mm]\to[/mm] V durch [mm]L_{B}A[/mm] = BA für alle
> A
> > [mm]\in[/mm]
> > > V
> > > Gib eine geordnete Basis von V an und den
> > > Koordinatenvektor zu A [mm]\in[/mm] V bezüglich dieser
> Basis.
> > > Zeige [mm]L_{B} \in[/mm] Hom(V,V) und det [mm]L_{B}[/mm] = (det [mm]B)^{2}[/mm]


Hallo,

> > was ist denn mit [mm]K_2[/mm] gemeint?
> > Der VR der [mm]2\times[/mm] 2-Matrizen über K?

Was denn jetzt?
Ich sehe die Antwort nicht.

> > Ich würde erstmal genau das tun, wozu Du aufgefordert
> > wirst:
> > eine Basis [mm]\mathcal{B}[/mm] von V angeben. Und?

Und? Wo ist sie denn nun?

> >
> > Wenn wir nun haben [mm]A=\pmat{a_1_1&a_1_2\\a_2_1&a_2_2},[/mm] wie
> > lautet dann der Koordinatenvektor von A bzgl. [mm]\mathcal{B}?[/mm]

Wie denn?
Wir brauchen erst eine Basis von V, bevor wir über Koordinatenvektoren reden.

> Hey, also ich wähle einen beliebigen Koordinatenvektor,
> wie z.B. [mm]\vektor{\alpha \\ \beta},[/mm]

???
Weißt Du überhaupt, was ein "Koordinatenvektor bzgl einer Basis" ist?

Wie gesagt: wir müssen wissen, was V ist, damit wir wissen, welche Elemente in V sind und eine Basis benennen können.

Ohne Basis kein Koordinatenvektor.

> den ich weiter folgender
> Maßen umforme: [mm]\pmat{ a & b \\ c & d }[/mm] * [mm]\vektor{\alpha \\ \beta}[/mm]

Warum tust Du das? Nach welchen Regeln?

Ich gehe, bis Du mir das Gegenteil sagst, davon aus, daß V der Raum der [mm] 2\times [/mm] 2-Matrizen über K ist.
Ich glaube, Du hast die Abbildung nicht verstanden.

[mm] L_B [/mm] bildet Elemente aus V auf Elemente aus V ab in in der angegebenen Weise:

[mm] L_B(X)=B*X [/mm] f.a. [mm] X\in [/mm] V.

Der Vektor X ist eine Matrix, und das Bild dieses Vektors ebenfalls.

Daß das Bild in V ist, sollte Dir einleuchten.
Warum ist das so?


> > könntest Du vorrechnen, daß [mm]L_B[/mm] ein Homomorphismus ist.
> > Was ist dafür zu zeigen?
> Ich muss zeigen, dass

f.a. [mm] v_1, v_2, [/mm] v [mm] \in [/mm] V und [mm] \alpha\in [/mm] K gilt:

> [mm]L_B[/mm] (v1 + v2)= [mm]L_B[/mm] (v1) + [mm]L_B[/mm] (v2)
> und [mm]L_B[/mm] [mm](\alpha*v)[/mm] = [mm]\alpha*[/mm] [mm]L_B[/mm] (v) ist, oder?

Ja.
Dann mach doch mal.
Wende die Funktionsvorschrift an und nutze, was Du übers Rechnen mit Matrizen gelernt hast.

> > Und warum bildet er in die Menge V ab?

>

> Das verstehe ich leider nicht...

s.o.

> >
> > Für die Determinante brauchst Du die Darstellungsmatrix
> > bzgl. [mm]\mathcal{B}.[/mm]
> >
> > Berechne dafür zunächst die Bilder der Basisvektoren von
> > [mm]\mathcal{B}.[/mm]

>

> Wie soll ich das machen? Soll ich mir eine beliebige Matrix
> dafür aussuchen?

???

[mm] L_B [/mm] ist eine lineare Abbildung zwischen endlich-dimensionalen VRen.

Diese kann man bzgl. vorgegebener Basen in Bild- und Urbildraum mithilfe einer Matrix, der Darstellungsmatrix schreiben.

Stichworte: Darstellungsmatrix, Koordinatenvektor.

Wie gesagt: Du nimmst die Elemente Deiner Basis und berechnest lt. Funktionsvorschrift deren Funktionswerte unter der Abbildung [mm] L_B. [/mm]

Danach können wir weitersehen.
Möglicherweise hast Du größere Lücken. Du solltest sie recht bald füllen.
Vielleicht aber verwirrt Dich auch bloß, daß die Vektoren (=Elemente des Vektorraumes) in dieser Aufgabe Matrizen sind.
Das B in der Definition von [mm] L_B [/mm] ist nicht die Darstellungsmatrix!

LG Angela





> > Wenn Du das hast, kannst Du die Darstellungsmatrix
> > aufstellen.  
> > Deren Determinante ist die Determinante von [mm]L_B.[/mm]
> >
> > LG Angela
> >
> >
> > > Kann mir bitte jemand
> > > weiterhelfen.
> > >
> > > Ich habe diese Frage in keinem Forum auf anderen
> > > Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]