matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAnsätze zu Potenzen/Wurzeln/Ex
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Ansätze zu Potenzen/Wurzeln/Ex
Ansätze zu Potenzen/Wurzeln/Ex < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansätze zu Potenzen/Wurzeln/Ex: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 14:38 So 03.09.2006
Autor: Haase

Aufgabe
Vereinfachen Sie

Hi Allerseits,

wäre nett wenn ihr mir ein paar Ansätze vorlegt.

Aufgabenstellung: Vereinfachen Sie

b) [mm] $(a^{1/2} [/mm] - [mm] a^{-1/2})^2 [/mm] * [mm] (a^{3/2} [/mm] - [mm] a^{1/2})^{-2}$ [/mm]

c) [mm] $\frac{m-n}{\wurzel{m} - \wurzel{n}}$ [/mm]

Vielen Dank im Vorraus

        
Bezug
Ansätze zu Potenzen/Wurzeln/Ex: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 So 03.09.2006
Autor: laryllan

Aloa hé,

Ja solche Aufgaben erfreuen sich immernoch großer Beliebtheit:

Ich weiß nicht genau, was du jetzt lesen möchtest, weil so Umfangreich, als dass man groß Ansätze vorstellen müsste, sind die Aufgaben ja nicht.

zu b): Sofern die "-2" hinter der letzten Klammer wirklich als "-2" und nicht als "hoch -2" gedacht ist, würde ich spontan dazu raten einfach einmal auszurechnen. Wichtig: die erste Klammer ist ein Binom zweiten Gerades! Ferner gilt nach den Rechenregeln für Potenzen: [mm] a^{-\bruch{1}{2}} [/mm] = [mm] \bruch{1}{\wurzel{a}}. [/mm] Ist halt etwas aufwendiger. Auch beim Gleichnamigmachen der Brüche Vorsicht walten lassen.

zu c): Verwende doch mal die dritte binomische Formel! :)

Namárie,
sagt ein Lary, wo davon hüpft

Bezug
        
Bezug
Ansätze zu Potenzen/Wurzeln/Ex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 So 03.09.2006
Autor: Haase

jup, ist ein hoch Zeichen, hat er leider nicht umgewandelt.

hm, irgendwie geht bei mir das Licht noch nicht auf.

bei b) bin ich jetzt bei = [mm] (a^1/2 [/mm] - [mm] a^-1/2)^2 [/mm] * a^-2
Die erste Summe, da könnte ich doch ein Binom 2 draus machen? Aber wie...

bei c) bin ich jetzt bei = (m - n) * (m^-1/2 - n^-1/2)
Die zweite Summe kann man auch zu einem Binom2 formen?

Bezug
                
Bezug
Ansätze zu Potenzen/Wurzeln/Ex: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 So 03.09.2006
Autor: Christian

Hallo.

Hab erstmal in Deinem ersten Post die Formel lesbar gemacht.
Prinzipiell steigert die Auseinandersetzung mit unserem Formeleditor, der in wirklich JEDEM Browser funktioniert, die Lesbarkeit der Artikel und damit auch die Wahrscheinlichkeit, daß sich möglichst bald jemand mit Deinem Problem auseinandersetzt, Das nur als Tip am Rande.

Zur zweiten Aufgabe:
beachte, daß [mm] $(a+b)(a-b)=a^2-b^2$, [/mm] was wird aus der Formel, wenn [mm] $a=\sqrt [/mm] m$ und [mm] $b=\sqrt [/mm] n$?
Zur ersten Aufgabe: Du mußt wohl in den sauren Apfel beißen und ausmultiplizieren,

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]