matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungAnordnungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Anordnungen
Anordnungen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anordnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 So 19.04.2009
Autor: isabell_88

Aufgabe
Wieviele Möglichkieten gibt es, auf dem Schachbrett in einer Reihe die 8 offiziere aufzustellen?


Ich würde meinen, dass es sich hier um eine n-Permutation handelt:
"n unterschiedliche Gegenstände kann man auf n!  verschiedene Arten anorden.

Also würde die Lösung 8! = 1*2*3*4*5*6*7*8
ALso gibt es 90720 verschiedene Möglichkeiten.

Ich wüsste gerne ob ich damit richtig liege
und ich danke im voraus

        
Bezug
Anordnungen: Bestätigung
Status: (Antwort) fertig Status 
Datum: 18:51 So 19.04.2009
Autor: weightgainer

Hallo isabell_88,

das klingt für mich nach einer guten Lösung. Die 8 Offiziere sind alle unterscheidbar und müssen auf 8 Plätze verteilt werden. Müsste ein klassischer Fall sein, wie du richtig erkannt hast.

Gruß,
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]