matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesAnnährung durch Rotationskörpe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Annährung durch Rotationskörpe
Annährung durch Rotationskörpe < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Annährung durch Rotationskörpe: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:30 Sa 11.03.2006
Autor: Kyon

Aufgabe
Wählen Sie verschiedene Ansätze für Querschnittsflächen, die bei der Rotation im eine geeignete Achse einen Drehkörper von der Form eines Fasses ergeben.

Ich weiss wie ich das Volumene von Rotationskörpern berechne.
Für einen Rotationskörper, der durch Rotation des Graphen der Funktion f im Intervall [a,b] um die x-Achse entsteht, lautet die Formel zur Volumenberechnung:
x-achse:
V= [mm] \pi \*\integral_{a}^{b}{f(x)² \*dx} [/mm]

y-achse:
V= [mm] \pi \* \integral_{fa}^{fb}x² \*dy [/mm]

Es wäre sehr schön, wenn mir jemand weiterhelfen könnte!!
DANKE!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Annährung durch Rotationskörpe: Tipp
Status: (Antwort) fertig Status 
Datum: 14:06 Di 14.03.2006
Autor: sambalmueslie

Ich würde das ganze Teil um die x-Achse rotieren und für die "Fassfunktion" eine Parabel verwenden.

Beispielsweise: $f(x) = [mm] -0,1x^2 [/mm] + 0,4x + 1$

Grenzen: a=0, b = 4



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]