matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAnalytische Geometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Analytische Geometrie
Analytische Geometrie < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie: Polyeder:1001 Dreiecksflächen
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 02.11.2005
Autor: Schabrackentapir

In der Veranstaltung Analytische Geometrie und Lineare Algebra wurde folgende Übungsaufgabe gestellt:

Kann es einen Polyeder geben, der aus 1001 Dreiecksflächen besteht? Beweisen Sie ihre Vermutung.

Ein Polyeder ist ja generell einfach ein dreidimensionaler Vielflächner, so dass es unerheblich ist, dass er etwa kongruent oder konvex ist. In diesen Fällen könnte man sofort einen wie in der Aufgabenstellung geforderten Polyeder ausschließen. Ich habe zwar noch kein Beispiel gefunden, dass ein solcher Polyeder existiert, jedoch bin auch (noch) nicht gewillt, einfach hinzunehmen, dass einen solchen Polyeder (gedanklich) zu konstruieren völlig unmöglich sei. Als "Baumaterial" für dieses Polyeder dienen alle Polyeder, die ausschließlich Dreiecke als Flächen haben. Mir sind dazu nur Tetraeder, Oktaeder und Ikosaeder eingefallen. Gibt es noch mehr Polyeder mit ausschließlich Dreiecken als Seitenflächen? Kann mir jemand weiterhelfen? Verzweifle gerade.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Analytische Geometrie: Eulersche Formel
Status: (Antwort) fertig Status 
Datum: 18:56 Mi 02.11.2005
Autor: moudi

Hallo Schabrackentapier

Ich würde es einmal mit der Eulerschen Polyederformel versuchen.

#(Ecken)-#(Kanten)+#(Flächen)=2 oder $E-K+F=2$.

F kennst du, K kannst du dir überlegen und dann wirst du feststellen,
dass es für E keine ganzzahlige Lösung gibt.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]