Allgemeine Sinusfunktion < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:42 Do 03.05.2012 | Autor: | Me1905 |
Aufgabe | Von einer Sinusschwingung der Form y(t) = A* sin(omega*t+Phi) mit A > 0 und omega > 0 sind folgende
Daten bekannt:
(a) Das 1. Maximum ymax = 5cm wird nach t1 = 3s,
(b) das 1. Minimum ymin = -5cm nach t2 = 10s erreicht.
Bestimmen Sie A, omega und phi |
Ich versteh da nur Bahnhof...
y(t)= 5*sin (omega*t + Phi )
Was ist die Formel für die Berechnung von Omega und Phi? Ich brauch nur die Formel.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Me1905,
> Von einer Sinusschwingung der Form y(t) = A*
> sin(omega*t+Phi) mit A > 0 und omega > 0 sind folgende
> Daten bekannt:
> (a) Das 1. Maximum ymax = 5cm wird nach t1 = 3s,
> (b) das 1. Minimum ymin = -5cm nach t2 = 10s erreicht.
> Bestimmen Sie A, omega und phi
> Ich versteh da nur Bahnhof...
>
> y(t)= 5*sin (omega*t + Phi )
>
> Was ist die Formel für die Berechnung von Omega und Phi?
> Ich brauch nur die Formel.
>
Aus den bekannten Daten ist ersichtlich, dass Du die Ableitung benötigst.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruss
MathePower
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:23 Do 03.05.2012 | Autor: | Infinit |
Hallo,
Du kannst einfach die gegebenen Werte einsetzen.
Wenn zwischen dem 1. Maximum und dem 1. Minimum 7 Sekunden liegen, beträgt die gesamte Schwingdauer T = 14 sec. Hieraus bekommst du
[mm] \omega = \bruch{2\pi}{T} [/mm]
Für den Phasenwinkel kannst Du jeden beliebigen Zeitpunkt einsetzen, zu dem Du alle Werte der Schwingung kennst. Für den Wert bei 3 Sekunden ergibt sich
[mm] 5 = 5 \cdot (\sin (\omega \cdot 3 + \varphi) [/mm]
Das jetzt nach dem Winkel auflösen.
Viel Spaß dabei,
Infinit
|
|
|
|