Allgemeine Frage < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben (jetzt keine bestimmte Matrix, sondern allgemein)
[mm] A=\pmat{ 3 & 3 & 7 \\ 0 & 2 & -1 \\ 0 & 0 & 8}*\pmat{ 2 & 0 & 0 \\ 3 & 10 & 0 \\ -1 & 1 & 3 }^{-1}
[/mm]
a) Berechnen sie die Determinante der zu A inversen Matrix
b) Berechnen sie die Determinante der Matrix A
c) Sei mittels A das Gleichunssystem Ax=b gegeben (in worten ausgedrückt)b Element von [mm] R^3\{0}. [/mm] Wieviele Lösungen hat das Gleichunssystem? Warum?
d) Ist 0 ein Eigenwert der Matrix A? - Stichhaltige Begründung
e) Welche Eigenschaften lassen sich für die durch die Matrix A gegebene lineare Abbildung f(x)=Ax ableiten? |
ad a)
wie geh ich vor, ich würd behaupten, ich muss zuerst die zweite Matrix [mm] \pmat{ 2 & 0 & 0 \\ 3 & 10 & 0 \\ -1 & 1 & 3 }^{-1} [/mm] "inversieren", also
[mm] \vmat{ 2 & 0 & 0 \\ 3 & 10 & 0 \\ -1 & 1 & 3 }\vmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm] - die Inverse Matrix daraus mit der ersten Matrix multiplizieren um auf die endgültige Matrix von A zu kommen und davon die inverse Matrix dann determinieren, lieg ich da richtig? bzw. kann man schneller vorgehen?
ad b) das selbe wie vorher, nur brauch ich die endgültige Matrix nicht nochmals "inversieren"
ad c) ?? weiß ich überhaupt nicht
ad d) wenn das determinieren von Matrix A 0 ergibt, hat auch ein Eigenwert den Wert 0 - stichhaltiger kann ichs allerdings nicht erklären
ad e) dazu bräucht ich wohl die endgültige Matrix A
Bitte um Hilfe bei meinen Fragen :(
lg,
Chrysler
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:14 Mo 28.01.2008 | Autor: | Sabah |
hallo,
a) und b) würde ich genau so machen, wie du vor hast.
c) hier muss du nur finden ob A linearabhängig oder unabhängig ist.
Weil aber A eine Determinante hat, ist A auf jeden Fall linearunabhängig, daraus folg auch, es gibt nur ein einzige Lösung.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:15 Mo 28.01.2008 | Autor: | DaReava |
Hi!
Zunächst ist wichtig, festzustellen dass wir hier mit $ [mm] n\times [/mm] n - $ Matrizen zu tun haben. Denn dann gelten einige praktische Regeln.
Zu #a: Hier gehts schon los mit den erwähnten Regeln:
es gilt: [mm] det(A * B) = det(A) * det(B) [/mm]
noch schöner ist, dass gilt: [mm] det(A^{-1}) = (det(A))^{-1} = \bruch{1}{det(A)} [/mm]
(natürlich nur, falls $ det(A) [mm] \not= [/mm] 0 $
Zu #b: Hier kann man entweder nochmals obige Regel anwenden (denn [mm] det(A) = ((det(A))^{-1})^{-1} [/mm] )
- oder eben noch einmal von vorne berechnen.
Zu #c: $ A x = b $ hier wäre aber wichtig zu wissen, was x, bzw b eigentlich ist... das scheint in deinem Post verloren gegangen zu sein.
Ist $ [mm] x\in \IR^3 [/mm] $, also ein Vektor so musst du herausfinden ob A linear unabhängig ist, bzw wieviele Zeilen abhängig sind.
Zu #d: Ihr habt doch bestimmt die Definition eines Eigenwertes gelernt?
$ [mm] \lambda [/mm] $ ist Eigenwert von A, gdw ein Vektor $ [mm] v\in \IR^n [/mm] $ existiert, sd gilt: $ A [mm] v=\lambda [/mm] v $
Umgeformt muss also gelten: [mm] A v - \lambda v = 0 \gdw (A- \lambda E_n)v = 0 [/mm] wobei E die Einheitsmatrix ist.
Da aber $ v [mm] \not= [/mm] 0 $ sein muss, kann die Gleichung nur erfüllt sein, wenn
$ (A - [mm] \lambda E_n) [/mm] $ linear abhängig ist.
Du musst also die entsprechende Matrix aufstellen und auf Abhängigkeit prüfen. (Etwa mit der Determinante)
Zu #e: Dazu müsstest du selbst noch einmal die Definition von Eigenvektoren betrachten. (Wikipedia ist hier empfehlenswert)
Dann ist auch das eigentlich nicht schwer zu erkennen.
Grüße reava
|
|
|
|