Algebra von messbarer Menge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Welche der folgenden Abbildungen [mm] \mu_{i} [/mm] : [mm] \mathcal{P}(\IR) \to [0,\infty] [/mm] sind äußere Maße?
i) [mm] \mu_{1}(A)=\begin{cases} 0, & \mbox{für } A \mbox{ abzählbar} \\ 1, & \mbox{ } \mbox{ sonst} \end{cases}
[/mm]
Bestimmen Sie gegebenenfalls di [mm] \sigma [/mm] - Algebra der [mm] \mu_{i} [/mm] messbaren Mengen, d.h. der Mengen, welche die Caratheodory-Bedingung erfüllen |
Hallo zusammen eine kurze Frage hab schon bestimmt dass es sich bei der Abbildung um ein äußeres maß handelt
Jetzt verstehe ich nicht die zweite Frage wie ich die [mm] \sigma [/mm] Algebra hierzu bestimme kann mir da jemand weiterhelfen?
lg eddie
|
|
|
|
Hiho,
was bedeutet denn, dass eine Menge meßbar ist nach Caratheodory?
Schreib dir mal die Definition davon hin und dann musst du dir überlegen, für welche Mengen $A [mm] \in \mathcal{P}(\IR)$ [/mm] das gelten könnte.
Die Fallunterscheidung, was da für die linke bzw rechte Seite rauskommen kann, ist aufgrund der Definition des äußeren Maßes recht begrenzt.
MFG,
Gono.
|
|
|
|
|
Okay mich hat nur die Frage etwas irritiert weil nach der [mm] \sigma [/mm] Algebra gefragt ist und ich nicht so genau weiss, wie ich selber eine konstruiere
Doch jetzt zurück zur Aufgabe also die Caratheodory Bedingung sagt dass:
Eine Menge B [mm] \subseteq [/mm] messbar bzgl [mm] \mu [/mm] ist falls
[mm] \forall [/mm] A [mm] \in \mathcal{P}(\IR) [/mm] : [mm] \mu [/mm] (A) = [mm] \mu [/mm] (A [mm] \cap [/mm] B ) + [mm] \mu (A\B)
[/mm]
[mm] \mu [/mm] ist hier unser äußeres Maß
A kann entweder abzählbar oder nicht abzählbar sein und [mm] \mu [/mm] (A) kann entweder den Wert 1 oder den wert 0 annehmen
1.Fall A abzählbar dann ist auch A [mm] \cap [/mm] B und [mm] A\B [/mm] abzählbar also ist die CB erfüllt
2.Fall A nicht abzählbar und B abzählbar dann ist A [mm] \cap [/mm] B abzählbar und [mm] A\B [/mm] nicht abzählbar also ist die CB erfüllt
3.Fall A nicht abzählbar und B nicht abzählbar dann ist A [mm] \cap [/mm] B und [mm] A\B [/mm] nicht abzählbar und die CB ist nicht erfüllt da 1 [mm] \not= [/mm] 2
Also muss mindestens eine der Mengen abzählbar sein damit die CB erfüllt ist
Doch was ist jetzt die [mm] \sigma [/mm] Algebra ist es
[mm] \mathcal{A}_{\mu} [/mm] = { [mm] A\subset \IR [/mm] | A ist [mm] \mu [/mm] messbar } ?
lg eddie
|
|
|
|