matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAlgebra und Analysis + Axiome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Algebra und Analysis + Axiome
Algebra und Analysis + Axiome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algebra und Analysis + Axiome: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 19:54 Fr 12.10.2007
Autor: hannesmeyer

Aufgabe 1
Mit der Verwendung von Axiomen beweisen:

1) a*0 = 0 ist.  a  [mm] \in [/mm] K
2) a + [mm] \infty [/mm] = b besitzt genau eine Lösung. [mm] \infty \in [/mm] K
3= a*b=0 so muss a oder b gleich 0 sein.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Aufgabe 2
1) a*0 = 0 ist.  a  [mm] \in [/mm] K
2) a + [mm] \infty [/mm] = b besitzt genau eine Lösung. [mm] \infty \in [/mm] K
3= a*b=0 so muss a oder b gleich 0 sein.

Hallo ich solle mit der Verwendung von Axiomen beweisen,

dass
1) a*0 = 0 ist.  a  [mm] \in [/mm] K
2) a + [mm] \infty [/mm] = b besitzt genau eine Lösung. [mm] \infty \in [/mm] K
3= a*b=0 so muss a oder b gleich 0 sein.

Allerdings weiß ich nicht wie ich ds machen soll.
Ich habe im Bereich Analysis ein sehr beschränktes Wissen.

Ich habe für 2 einen Ansatz, allerdings wäre mir eine Antwort von einem Profi lieber.


Wo kann ich in der Biblio mehr über Körperaxiome erfahren.
Im Inet und wikipedia finde ich nur allgemeine Erklärungen,
ich brauche aber etwas höheres, weil es eine Aufgabe ist, die wir aus einer Lesung haben.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Algebra und Analysis + Axiome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Fr 12.10.2007
Autor: angela.h.b.


> Mit der Verwendung von Axiomen beweisen:
>  
> 1) a*0 = 0 ist.  a  [mm]\in[/mm] K
> 2) a + [mm]\infty[/mm] = b besitzt genau eine Lösung. [mm]\infty \in[/mm] K
>  3= a*b=0 so muss a oder b gleich 0 sein.

Hallo,

[willkommenmr].

> Allerdings weiß ich nicht wie ich ds machen soll.
>  Ich habe im Bereich Analysis ein sehr beschränktes
> Wissen.

Ich nehme mal an, daß Du gerade die erste Vorlesung hattest.
Da habt Ihr die Körperaxiome "besprochen".
Du solltest sie jetzt vor Dir liegen haben, denn alles, was Du beim Bewiesen tust, mußt Du mit diesen Axiomen begründen.
Du darfst nichts verwenden, was in der Vorlesung nicht dran war.

Zum Buch:
diese Körpergeschichten müßten in vielen einführenden Analysisbüchern zu finden sein, schau Dich mal ein wenig um.
Ich selbst habe z.B. eine alte Ausgabe von Otto Forsters Analysis 1 auf dem Schreibtisch liegen, da findest Du drin, was Du benötigst. Gibt's bestimmt in der Bibliothek.
Wenn's um die Anfänge der Analysis geht, solltest Du Dir nicht unbedingt Algebrabücher ausleihen, da steht zuviel drin über Körper.

>  
> Ich habe für 2 einen Ansatz, allerdings wäre mir eine
> Antwort von einem Profi lieber.

Tja, da kennst Du dieses Forum noch nicht...
Wir haben das sehr gerne, wenn wir Ansätze zu sehen bekommen, das steht sogar in unseren Forenregeln.
Wir können dann viel besser helfen, wenn wir sehen, wo es Probleme gibt.
Es macht nichts, wenn etwas verkehrt ist, manchmal kann man es sogar noch etwas frisieren, so daß es dann stimmt.

Ich zeige Dir jetzt mal die erste Aufgabe, damit Du siehst, wie man das machen muß.

Ich verwende die Axiome  []für den Körper in der Fassung der Wikipedia, Du mußt vergleichen, ob das haargenau zu Deinen paßt. Manchmal gibt's kleine Unterschiede.

Zu zeigen:

Für alle a [mm] \in [/mm] K gilt a*0=0.

Beweis:

Sei a [mm] \in [/mm] K.

Es ist

a*0=a*(0+0)     denn 0 ist neutrales Element
=a*0+a*0          Distibutivgesetz

In einem Körper hat jedes Element ein Inverses bzgl der Addition, also gibt es ein Element -(a*0) mit a*0 + (-(a*0))=0.
Dieses Element wird nun zu a*0=a*0+a*0 addiert:

0=a*0+(-(a*0))=(a*0+a*0)+ (-(a*0))=a*0+(a*0+ (-(a*0))     Assoziativgesetz für die Addition
                                                          
=a*0 +0 =0    denn 0 ist das neutrale Element bzgl. der Addition.


Durchdenke das, versuche Dich an den anderen beiden und stell weitere Fragen bitte mit Deinen Lösungsansätzen.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]