Algebra der T-Vergangenheit < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei T eine Stoppzeit auf dem filtrierten Wahrscheinlichkeitsraum [mm] (\Omega, [/mm] F, [mm] ((F_{t})_{t\in \IR_+}, [/mm] P).
Zeigen Sie, dass für die [mm] \sigma-Algebra [/mm] der T-Vergangenheit gilt:
[mm] F_{T }= \sigma (X_{T} 1_{\{T < \infty \}} [/mm] : [mm] (X_{t})_{t\in \IR_+} [/mm] reellwertiger, adaptierter, rechsseitig stetiger Prozess) |
Hallo!
Ich habe mal wieder eine (vermutlich leichte) Aufgabe, bei der ich aber trotzdem nicht weiter komme...
[mm] \supseteq [/mm] ist klar, da nach Vorlesung [mm] X_{T} 1_{\{T < \infty \}} F_{T} [/mm] - messbar ist.
[mm] \subseteq [/mm] Also ich weiß, dass [mm] F_{T} [/mm] = [mm] \{A \in F: A\cap \{T<=t\} \in F_{t} f.a. t\in \IR_+\} [/mm] ist. Nun muss ich mir ja ein Element daraus her nehmen und zeigen, dass es auch in [mm] \sigma (X_{T} 1_{\{T < \infty \} }: (X_{t})_{t\in \IR_+} [/mm] reellwertiger, adaptierter, rechsseitig stetiger Prozess) ist. Nur wie mache ich das? Kann mir jemand auf die Sprünge helfen?
Viele Grüße!
Ich habe diese frage auch auf dem Mathe-Planeten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:05 Mo 17.05.2010 | Autor: | gfm |
> Sei T eine Stoppzeit auf dem filtrierten
> Wahrscheinlichkeitsraum [mm](\Omega,[/mm] F, [mm]((F_{t})_{t\in \IR_+},[/mm]
> P).
> Zeigen Sie, dass für die [mm]\sigma-Algebra[/mm] der
> T-Vergangenheit gilt:
>
> [mm]F_{T }= \sigma (X_{T} 1_{\{T < \infty \}}[/mm] : [mm](X_{t})_{t\in \IR_+}[/mm]
> reellwertiger, adaptierter, rechsseitig stetiger Prozess)
> Hallo!
>
> Ich habe mal wieder eine (vermutlich leichte) Aufgabe, bei
> der ich aber trotzdem nicht weiter komme...
>
> [mm]\supseteq[/mm] ist klar, da nach Vorlesung [mm]X_{T} 1_{\{T < \infty \}} F_{T}[/mm]
> - messbar ist.
>
> [mm]\subseteq[/mm] Also ich weiß, dass [mm]F_{T}[/mm] = [mm]\{A \in F: A\cap \{T<=t\} \in F_{t} f.a. t\in \IR_+\}[/mm]
> ist. Nun muss ich mir ja ein Element daraus her nehmen und
> zeigen, dass es auch in [mm]\sigma (X_{T} 1_{\{T < \infty \} }: (X_{t})_{t\in \IR_+}[/mm]
> reellwertiger, adaptierter, rechsseitig stetiger Prozess)
> ist. Nur wie mache ich das? Kann mir jemand auf die
> Sprünge helfen?
Ein Schuss ins Blaue ohne die Aufgabe zu erfassen und zu durchdenken:
Die (rechtsseitige) Stetigkeit ermöglicht oft die benötigten abzählbaren Mengenoperation über [mm] \IQ.
[/mm]
LG
gfm
|
|
|
|
|
Ist auch die [mm] \supseteq [/mm] Inklusion falsch?
Und leider kann ich immernoch noch nicht so viel mit deiner Antwort anfangen :( Ich weiß jetzt auch gar nicht mehr, was ich überhaupt zeigen soll. Kannst du mir das nochmal erklären?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mi 19.05.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:37 Mo 17.05.2010 | Autor: | Blech |
Hi,
wieso suchst Du Dir nicht für jedes [mm] $A\in F_T$ [/mm] einen entsprechenden adaptierten Prozeß, der garantiert, daß A in Deiner [mm] $\sigma$-Algebra [/mm] ist?
ciao
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:03 Di 18.05.2010 | Autor: | gfm |
> Sei T eine Stoppzeit auf dem filtrierten
> Wahrscheinlichkeitsraum [mm](\Omega,[/mm] F, [mm]((F_{t})_{t\in \IR_+},[/mm]
> P).
> Zeigen Sie, dass für die [mm]\sigma-Algebra[/mm] der
> T-Vergangenheit gilt:
>
> [mm]F_{T }= \sigma (X_{T} 1_{\{T < \infty \}}[/mm] : [mm](X_{t})_{t\in \IR_+}[/mm]
> reellwertiger, adaptierter, rechsseitig stetiger Prozess)
> Hallo!
>
> Ich habe mal wieder eine (vermutlich leichte) Aufgabe, bei
> der ich aber trotzdem nicht weiter komme...
>
> [mm]\supseteq[/mm] ist klar, da nach Vorlesung [mm]X_{T} 1_{\{T < \infty \}} F_{T}[/mm]
> - messbar ist.
>
> [mm]\subseteq[/mm] Also ich weiß, dass [mm]F_{T}[/mm] = [mm]\{A \in F: A\cap \{T<=t\} \in F_{t} f.a. t\in \IR_+\}[/mm]
> ist. Nun muss ich mir ja ein Element daraus her nehmen und
> zeigen, dass es auch in [mm]\sigma (X_{T} 1_{\{T < \infty \} }: (X_{t})_{t\in \IR_+}[/mm]
> reellwertiger, adaptierter, rechsseitig stetiger Prozess)
> ist. Nur wie mache ich das? Kann mir jemand auf die
> Sprünge helfen?
>
Bin mir wegen der Nullmengen und der Menge [mm] \{T<\infty\} [/mm] nicht sicher, aber ich würde in folgende Richtung gehen:
Aus[mm]A\in F_T[/mm] folgt [mm]A\cap\{T\le t\}\in F_t[/mm]. Dann ist [mm]Y_t:=1_{A\cap\{T\le t\}}[/mm] [mm]F_t[/mm]-meßbar. [mm] Y_t [/mm] ist auch rechtsstetig, denn [mm] Y_t-Y_s=1_A*(1_{(s,t]}\circ\!T). [/mm] Und dann ist noch [mm] Y_T*1_{\{T<\infty\}}=1_A*1_{\{T<\infty\}}.
[/mm]
LG
gfm
|
|
|
|