Affine Abbildungen bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:36 Do 09.02.2012 | Autor: | durden88 |
Aufgabe | Wir betrachten eine affine Abbildung des [mm] R^2. [/mm] Bei dieser soll es sich um eine Spiegelung an der Hauptwinkelhalbierenden in x-Achsenrichtung handeln. Bestimmen Sie die zugehörigen Eigenwerte und Eigenvektoren. |
Juhu,
also die Aufgabe finde ich persönlich das schwer. Also meine Überlegungen:
Ich habe eine gerade, woran gespiegelt wird. Dann müsste es eine Fixpunktgerade sein mit einer Schar von unendlich Vielen Fixgeraden, die diese schneiden und somit ist es eine Parallelstreckung wobei ein Eigenwert [mm] \lambda=1 [/mm] ist und ein Eigenwert [mm] \lambda=b [/mm] , b ist ungleich 1.... Falls das richtig ist, würde ich die Eigenvektoren noch ausrechnen.
|
|
|
|
> Wir betrachten eine affine Abbildung des [mm]R^2.[/mm] Bei dieser
> soll es sich um eine Spiegelung an der
> Hauptwinkelhalbierenden in x-Achsenrichtung handeln.
> Bestimmen Sie die zugehörigen Eigenwerte und
> Eigenvektoren.
> Juhu,
>
> also die Aufgabe finde ich persönlich das schwer. Also
> meine Überlegungen:
>
> Ich habe eine gerade, woran gespiegelt wird. Dann müsste
> es eine Fixpunktgerade sein mit einer Schar von unendlich
> Vielen Fixgeraden, die diese schneiden und somit ist es
> eine Parallelstreckung wobei ein Eigenwert [mm]\lambda=1[/mm] ist
> und ein Eigenwert [mm]\lambda=b[/mm] , b ist ungleich 1.... Falls
> das richtig ist, würde ich die Eigenvektoren noch
> ausrechnen.
Hallo Durden,
zuerst wäre zu klären, wie die Abbildung genau zu
verstehen ist. Um eine "normale" Geradenspiegelung mit
Abbildungsstrahlen normal zur Spiegelungsachse scheint
es sich ja nicht zu handeln. Ich verstehe die Abbildungs-
vorschrift so:
Ist ein Punkt P(x|y) gegeben, so lege eine Parallele p
zur x-Achse durch P, bestimme deren Schnittpunkt W(y/y)
mit der Geraden w: y=x und bestimme dann den Spiegel-
punkt von P bezüglich der Punktspiegelung am Zentrum W.
Auf diese Weise würde der Punkt [mm] P(x\,|\,y) [/mm] auf den Punkt
[mm] \overline{P}(2\,y-x\,|\,y) [/mm] abgebildet. Damit ist es leicht, die Abbil-
dungsmatrix anzugeben und damit dann an die weiteren
Fragen zu gehen.
LG Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:33 Do 09.02.2012 | Autor: | durden88 |
Kann ich das nicht über ein anderen Weg machen? Das war eine alte Klausuraufgabe und so eine Definition hatte 100 pro keiner parat. Kann man das nicht über die Definitionen der Eigenvektoren machen, das ich z.B. weiß das es eine Parallelstreckung ist´?
|
|
|
|
|
> Kann ich das nicht über ein anderen Weg machen? Das war
> eine alte Klausuraufgabe und so eine Definition hatte 100
> pro keiner parat. Kann man das nicht über die Definitionen
> der Eigenvektoren machen, das ich z.B. weiß das es eine
> Parallelstreckung ist´?
Nun, du hattest aber von einer Spiegelung, und nicht von
einer Parallelstreckung oder Affinspiegelung gesprochen.
Deshalb musste ich zuerst erraten, worum es überhaupt
gehen könnte !
Wenn man nun weiß, um was für eine Art von Abbildung
es sich handeln soll, kann man die Eigenvektoren wohl
auch ohne Matrizenrechnung durch geometrische Betrach-
tung ermitteln. Mach dir klar, was mit Vektoren parallel
zu den Koordinatenachsen bzw. parallel zur "Haupt-"
Winkelhalbierenden bei der Abbildung geschieht.
Der Gegentest mit Matrizenrechnung ist aber jedenfalls
auch zu empfehlen.
LG Al-Chw.
|
|
|
|