matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAffine Abbildung (Hyperbel)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Affine Abbildung (Hyperbel)
Affine Abbildung (Hyperbel) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affine Abbildung (Hyperbel): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:11 Sa 24.06.2006
Autor: giggs

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Zu folgender Behauptung soll der (ebenfalls aufgeführte) Beweis erbracht werden, aus diesem sollte durch Anwendung einer affinen Abbildung sofort der allgemeine Fall folgen. Dies ist mir aber nicht ersichtlich.

Kann mir das jmd genauer erläutern und diese affine Abbildung angeben?

Hier Behauptung und Beweis

(1) Behauptung:

Für [mm]a,b \in \IR, a, b \ne 0,[/mm] ist [mm]{(\pma cosh t, b sinh t)|t \in \IR}[/mm] eine Hyperbel


(2) Beweis:

Es gilt:

[mm]cosh t = \bruch{e^t + e^{-t}}{2}, sinh t = \bruch{e^t - e^{-t}}{2} \Rightarrow cosh^2 t - sinh^2 t = 1,[/mm]
denn
[mm]\left( \bruch{e^t + e^{-t}}{2} \right)^2 - \left( \bruch{e^t + e^{-t}}{2} \right)^2 = \bruch{1}{4}(2e^0 + 2e^0) = \bruch{1}{4} * 4 = 1 [/mm].
Gilt nun [mm]u^2 - v^2 = 1[/mm], dann gibt es ein [mm]t[/mm], so dass [mm]u = \pm cosh t, v = sinh t[/mm], dies wird sofort klar wenn mann die Graphen betrachtet. Damit ist (2) für [mm]a = b = 1[/mm] gezeigt. Durch Anwendung einer affinen Abbildung folgt sofort der allgemeine Fall.


Gruss giggs

        
Bezug
Affine Abbildung (Hyperbel): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 28.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]