matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenAdditive Jordanzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Additive Jordanzerlegung
Additive Jordanzerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additive Jordanzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Mi 09.03.2011
Autor: Chichisama

Aufgabe
Geben Sie ein Beispiel, um zu zeigen, dass die Bedingung DN = ND in der Jordan-Zerlegung notwendig ist.
Finden Sie dazu eine Matrix x, die man als x = D + N schreiben kann (D diagonalisierbar und N nilpotent), jedoch keine Jordan-Zerlegung von x ist.

Gut, ich habe ein Beispiel gefunden, wo das gilt:

x = [mm] \pmat{ 5 & -4 & -3 \\ -1 & 4 & 3 \\ 3 & -6 & -4 } [/mm] = [mm] \pmat{ 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 } [/mm] + [mm] \pmat{ 0 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 } [/mm] = D + N

D ist dabei diagonalisierbar und N ist nipotent. Außerdem gilt DN [mm] \not= [/mm] ND.

Aber wie soll dieses Beispiel jetzt zeigen, dass die Kommutativität notwendig ist?



        
Bezug
Additive Jordanzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Do 10.03.2011
Autor: felixf

Moin!

> Geben Sie ein Beispiel, um zu zeigen, dass die Bedingung DN
> = ND in der Jordan-Zerlegung notwendig ist.

Das ist etwas ungenau formuliert. Man koennte es z.B. so interpretieren, dass die Bedingung fuer die Eindeutigkeit der Zerlegung notwendig ist.

> Finden Sie dazu eine Matrix x, die man als x = D + N
> schreiben kann (D diagonalisierbar und N nilpotent), jedoch
> keine Jordan-Zerlegung von x ist.

Das hast du gezeigt:

>  Gut, ich habe ein Beispiel gefunden, wo das gilt:
>  
> x = [mm]\pmat{ 5 & -4 & -3 \\ -1 & 4 & 3 \\ 3 & -6 & -4 }[/mm] =
> [mm]\pmat{ 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 }[/mm] + [mm]\pmat{ 0 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 }[/mm]
> = D + N
>  
> D ist dabei diagonalisierbar und N ist nipotent. Außerdem
> gilt DN [mm]\not=[/mm] ND.

Damit hast du eine Zerlegung gefunden in eine Diagonalisierbare und eine nilpotente Matrix, die nicht die Jordan-Zerlegung ist (sonst muesste $D N = N D$ gelten).

> Aber wie soll dieses Beispiel jetzt zeigen, dass die
> Kommutativität notwendig ist?

Du hast mind. zwei Zerlegungen $x = D + N$ mit $D$ diagonalisierbar und $N$ nilpotent, womit die Zerlegung nicht eindeutig ist. Um sie eindeutig zu machen, muss man z.B. $D N = N D$ fordern.

LG Felix


Bezug
                
Bezug
Additive Jordanzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:44 Do 10.03.2011
Autor: Chichisama


> Du hast mind. zwei Zerlegungen [mm]x = D + N[/mm] mit [mm]D[/mm]
> diagonalisierbar und [mm]N[/mm] nilpotent, womit die Zerlegung nicht
> eindeutig ist. Um sie eindeutig zu machen, muss man z.B. [mm]D N = N D[/mm]
> fordern.

Danke dir, Felix! Jetzt ist es klar! Darauf hätte ich doch eigentlich selbst kommen können! Danke nochmal!
LG, Tine


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]