matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeAdd. und Mult. bei Abbildung?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Add. und Mult. bei Abbildung?
Add. und Mult. bei Abbildung? < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Add. und Mult. bei Abbildung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:59 So 23.11.2014
Autor: duduknow

Aufgabe
Ist die Menge [mm] $\{f:[0, 1] \rightarrow \mathbb{R} \mid f(\frac{1}{2}) = 0\}$ [/mm] ein Untervektorraum von $Abb([0, 1], [mm] \mathbb{R})$? [/mm]



Hi,

von welcher Addition und skalaren Multipliation, und welchem Körper muss ich bei dieser Aufgabe ausgehen?
Gibt es irgendwelche Standards, die ich annehmen muss, wenn ein Vektorraum mit Funktionen als Elementen vorliegt (welche sind das dann)?

Vielen Dank und mit freundlichen Grüßen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Add. und Mult. bei Abbildung?: Antwort
Status: (Antwort) fertig Status 
Datum: 02:09 So 23.11.2014
Autor: Teufel

Hi!

Addition ist die "normale" Addition von Funktionen, sind also [mm] $f,g\in\text{Abb}([0,1],\IR)$, [/mm] dann ist die Summe punktweise so definiert: $(f+g)(x)=f(x)+g(x)$.

Die skalare Multiplikation ist analog so definiert: [mm] $(a\cdot f)(x)=a\cdot [/mm] f(x)$. Wenn nichts anderes da steht, kannst du immer davon ausgehen. Der Körper sollte so sein, dass die skalare Multiplikation Sinn ergibt, weil man sie als [mm] a\cdot [/mm] f(x) definieren will und [mm] $f(x)\in\IR$ [/mm] liegt, sollte man [mm] $a\in\IR$ [/mm] zulassen. Einen größeren Körper [mm] (\IC) [/mm] kannst du nicht nehmen, weil sonst $af(x)$ nicht mehr in [mm] $\text{Abb}([0,1],\IR)$ [/mm] wäre.

Einen kleineren kannst du wählen, z.B. kannst du [mm] $\text{Abb}([0,1],\IR)$ [/mm] auch als [mm] $\IQ$-Vektorraum [/mm] auffassen, wenn du möchtest. Für die Aufgabe würde das auch keinen Unterschied machen. Aber geh einfach immer von dem Körper aus, wo die Funktionen hingehen, hier also [mm] \IR. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]