matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAbzählbare Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Abzählbare Basis
Abzählbare Basis < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbare Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Mo 29.08.2011
Autor: blascowitz

Aufgabe
Sei $X$ ein topologischer Raum mit abzählbarer Basis [mm] $O_{i}, \; i\in \IN$. [/mm] Dann existiert zu jeder offenen Überdeckung [mm] $X=\bigcup_{\alpha \in A} U_{\alpha}$ [/mm] eine abzählbare Teilüberdeckung.

Hallo erstmal

beim Beweis dieses Lemmas haperts ein bisschen.

Also jedes [mm] $U_{\alpha}$ [/mm] lässt sich darstellen als [mm] $U_{\alpha}=\bigcup_{i \in I_{\alpha}} O_{i}$ [/mm] mit [mm] $I_{\alpha} \subseteq \IN [/mm] $

Also ist [mm] $X=\bigcup_{\alpha \in A} U_{\alpha}=\bigcup_{i \in \bigcup_{\alpha} I_{\alpha}}O_{i}$. [/mm]

Setze [mm] $I:=\bigcup_{\alpha} I_{\alpha}$ [/mm]

Für jedes $i [mm] \in [/mm] I$ wähle [mm] $\alpha_{i}$ [/mm] mit $i [mm] \in I_{\alpha_{i}}$ [/mm] also [mm] $O_{i} \subseteq U_{\alpha_{i}}$. [/mm]

Es folgt
[mm] $X=\bigcup_{i \in I} O_{i} \subseteq \bigcup_{i \in I} U_{\alpha_{i}} \subseteq [/mm] X$

Mein Problem ist, dass ich nicht sehe, das hier nur abzählbar viele [mm] $\alpha_{i}$ [/mm] gebraucht werden. Woran sehe ich das.

Viele Dank für die Hilfe
Blasco

        
Bezug
Abzählbare Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Mo 29.08.2011
Autor: felixf

Moin Blasco!

> Sei [mm]X[/mm] ein topologischer Raum mit abzählbarer Basis [mm]O_{i}, \; i\in \IN[/mm].
> Dann existiert zu jeder offenen Überdeckung
> [mm]X=\bigcup_{\alpha \in A} U_{\alpha}[/mm] eine abzählbare
> Teilüberdeckung.
>  Hallo erstmal
>  
> beim Beweis dieses Lemmas haperts ein bisschen.
>  
> Also jedes [mm]U_{\alpha}[/mm] lässt sich darstellen als
> [mm]U_{\alpha}=\bigcup_{i \in I_{\alpha}} O_{i}[/mm] mit [mm]I_{\alpha} \subseteq \IN[/mm]
>
> Also ist [mm]X=\bigcup_{\alpha \in A} U_{\alpha}=\bigcup_{i \in \bigcup_{\alpha} I_{\alpha}}O_{i}[/mm].
>
> Setze [mm]I:=\bigcup_{\alpha} I_{\alpha}[/mm]
>  
> Für jedes [mm]i \in I[/mm] wähle [mm]\alpha_{i}[/mm] mit [mm]i \in I_{\alpha_{i}}[/mm]
> also [mm]O_{i} \subseteq U_{\alpha_{i}}[/mm].
>  
> Es folgt
> [mm]X=\bigcup_{i \in I} O_{i} \subseteq \bigcup_{i \in I} U_{\alpha_{i}} \subseteq X[/mm]
>  
> Mein Problem ist, dass ich nicht sehe, das hier nur
> abzählbar viele [mm]\alpha_{i}[/mm] gebraucht werden. Woran sehe
> ich das.

Die Menge $I$ ist ja abzaehlbar.

Weiterhin gibt es zu jedem $i [mm] \in [/mm] I$ ein [mm] $\alpha_i$ [/mm] mit [mm] $O_i \subseteq U_{\alpha_i}$. [/mm] Damit ist [mm] $\bigcup_{i \in I} O_i \subseteq \bigcup_{i \in I} U_{\alpha_i}$. [/mm]

LG Felix


Bezug
                
Bezug
Abzählbare Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Mo 29.08.2011
Autor: blascowitz

Das Brett vorm Kopf hat sich gerade gelöst, danke schön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]