matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand zwischenPunkt u. Ebene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - Abstand zwischenPunkt u. Ebene
Abstand zwischenPunkt u. Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zwischenPunkt u. Ebene: Frage
Status: (Frage) beantwortet Status 
Datum: 17:41 So 13.03.2005
Autor: milkaa

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich muss leider gestehen, dass ich mich mit der Seite noch nicht so gut auskenne, aber ich hoffe, dass man mein Problem nachvollziehen kann.

Also, gegeben sind die Punkte A(3/3/2), B(5/3/0) und C(3/5/0)

Die Aufgabe lautet, dass ich den Abstand des Punktes O(0/0/0) von der Ebene durch A,B,C bestimmen soll.

Also habe ich in meinem ersten Ansatz die Ebengleichung aufgestellt.  

Diese lautet e:  
[mm] \vektor{3 \\ 3 \\ 2} [/mm] + t* [mm] \vektor{2 \\ 0 \\ -2} [/mm] + s* [mm] \vektor{0 \\ 2 \\-2} [/mm]

Ich weiß auch, dass ich zur Berechnung des Abstands nun die HNF benötige. Allerdings weiß ich nicht, wie ich diese aus dieser Parameterform bekomme.

Ich würde mich freuen, wenn mir jemand helfen könnte.
Liebe Grüße milkaa

        
Bezug
Abstand zwischenPunkt u. Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 So 13.03.2005
Autor: Fabian

Hallo milkaa

Du mußt die Ebene in die Koordinatendarstellung umrechnen.

Also Normelnvektor bestimmen

[mm] \overrightarrow{n}=\vektor{2 \\ 0 \\ -2}\times \vektor{0 \\ 2 \\ -2} [/mm]


und diesen dann in die folgende Gleichung einsetzen

E: [mm] \overrightarrow{n}*[ \vektor{x \\ y \\ z}-\vektor{3 \\ 3 \\ 2}]=0 [/mm]

Um dann die HESSEsche Normalenform zu erhalten , mußt du die Koordinatendarstellung durch den Betrag des Normalenvektors teilen.

Jetzt fang erstmal an , und dann schauen wir mal wie weit du kommst

Gruß Fabian

Bezug
                
Bezug
Abstand zwischenPunkt u. Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 So 13.03.2005
Autor: milkaa

Erstmal Danke für deine Hilfe!

Also, ich weiß nicht, aber ich stehe wohl ein bisschen auf dem Schlauch. Ich muss also versuchen den Normalenvektor zu bestimmen. Also habe ich die beiden Vektoren   [mm] \vektor{2 \\ 0 \\-2} [/mm] und  [mm] \vektor{0 \\ 2 \\ -2} [/mm] in folgendes Gleichungssystem gebracht:

2 x   - 2z=0
     2y-2z=0

wenn ich die erste Zeile nach x auflöse erhalte ich aber x=z. Eherlich gesagt weiß ich nicht, wie ich damit umgehen soll? Kann ich mir eine Zahl aussuchen, um das Gleichungssystem zu lösen?


Bezug
                        
Bezug
Abstand zwischenPunkt u. Ebene: Hinweis
Status: (Antwort) fertig Status 
Datum: 18:49 So 13.03.2005
Autor: Fabian

Hallo Milkaa

Du mußt das  MBVektorprodukt bilden!

Gruß Fabian

Bezug
                
Bezug
Abstand zwischenPunkt u. Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 So 13.03.2005
Autor: milkaa

Also gut...
Ich muss gestehen, dass ich von dem Vektorprodukt noch nichts gehört habe. Wie auch immer, ich habe es nun dennoch versucht zu bilden und komme so auf die Normalenform

[  [mm] \vec{x} [/mm] -  [mm] \vektor{3 \\ 3 \\ 2} [/mm] ]*  [mm] \vektor{4 \\ 4 \\ 4} [/mm]

Es tut mir leid, dass ich noch immer nicht weiß, wie ich weiterkomme. Aber nun miss ich doch den Punt (0/0/0) einsetzen. Mache ich das nun für  [mm] \vec{x} [/mm] aus der dieser Gleichung? Oder ist es notwendih erst noch in Koordinatenform unzuwandeln?


Bezug
                        
Bezug
Abstand zwischenPunkt u. Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 So 13.03.2005
Autor: Fabian

Hallo

jetzt würd ich erstmal ausmultiplizieren:

E: 4x+4y+4z-32=

Und jetzt durch den Betrag des Normalenvektors teilen:

[mm] d_{E,0}=\bruch{4x+4y+4z-32}{\wurzel{48}} [/mm]

Jetzt mußt du nur noch deinen Punkt einsetzen

In deinem Fall geht es aber auch schneller:

E: [mm] \bruch{4}{\wurzel{48}}*x+\bruch{4}{\wurzel{48}}*y+\bruch{4}{\wurzel{48}}*z=\bruch{32}{\wurzel{48}} [/mm]

und [mm] d=\bruch{32}{\wurzel{48}} [/mm] ist der Abstand der Ebene zum Nullpunkt

Alles klar?

Gruß Fabian



Bezug
                                
Bezug
Abstand zwischenPunkt u. Ebene: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:53 So 13.03.2005
Autor: milkaa

Vielen, vielen Dank für deine Antwort. Ich denke jetzt ist alles klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]