matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand Punkt Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Abstand Punkt Gerade
Abstand Punkt Gerade < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Mi 01.09.2021
Autor: hase-hh

Aufgabe
Wie muss a gewählt werden, damit der Abstand des Punktes P [mm] \vektor{a \\ 0 \\ 1} [/mm] zur Geraden g: [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ 2 \\ 0} [/mm] + [mm] r*\vektor{ - 1 \\ 0 \\ 2 } [/mm]

3 LE beträgt?



Moin Moin,

dies ist eine Aufgabe aus dem Hilfsmittelfreien Teil der Abiturprüfung. Diese Teilaufgabe bringt 2 Bewertungspunkte.


Meine Ideen sind [schon in Anbetracht der 2 Bewertungspunkte] m.E. viel zu kompliziert und zu zeitaufwändig [habe jetzt 20-30 min gebraucht (!)].

Hat jemand eine Idee, wie man hier einfacher zur Lösung kommt???



Lösungsweg über Hilfsebene


I. Hilfsebene in Normalenform aufstellen. Sie ist orthogonal zu g und enthält den Punkt P.


H: [mm] (\vec{x} [/mm] -  [mm] \vektor{a \\ 0 \\ 1})* \vektor{ -1 \\ 0 \\ 2} [/mm]   = 0


-x + 2 z = -a +2


II. g in H einsetzen, um den Lotfußpunkt zu erhalten.

II.I. r berechnen

-(1-r) +2*(0+2*r) = -a + 2

-1 +r + 4r = -a + 2

5r = -a +3

r = [mm] \bruch{-a+3}{5} [/mm]


II.II. Lotfußpunkt L berechnen

=>  [mm] \overrightarrow{OL} [/mm] =  [mm] \vektor{1 \\ 2 \\ 0} [/mm] + [mm] (\bruch{-a+3}{5})*\vektor{ - 1 \\ 0 \\ 2 } [/mm]

=  [mm] \vektor{1 + \bruch{a-3}{5} \\ 2 \\ \bruch{-2a+6}{5}} [/mm]


III. Abstand bzw. Betrag zwischen P und dem Lotfußpunkt

III.I. Verbindungsvektor [mm] \overrightarrow{PL} [/mm] bilden


[mm] \overrightarrow{PL} [/mm] = [mm] \overrightarrow{OL} [/mm] - [mm] \overrightarrow{OP} [/mm]

[mm] \overrightarrow{PL} [/mm] = [mm] \vektor{1 + \bruch{a-3}{5} \\ 2 \\ \bruch{-2a+6}{5}} [/mm] - [mm] \vektor{a \\ 0 \\ 1} [/mm]

[mm] \overrightarrow{PL} [/mm] = [mm] \vektor{1 + \bruch{a-3}{5} -a \\ 2 \\ \bruch{-2a+6}{5} -1} [/mm]

[mm] \overrightarrow{PL} [/mm] = [mm] \vektor{\bruch{5+a-3-5a}{5} \\ 2 \\ \bruch{-2a+6-5}{5}} [/mm]

[mm] \overrightarrow{PL} [/mm] =  [mm] \vektor{\bruch{-4a+2}{5} \\ 2 \\ \bruch{-2a+1}{5}} [/mm]


III.II. a berechnen, so dass der Abstand bzw. die Länge bzw. der Betrag des Verbindungsvektors [mm] \overrightarrow{PL} [/mm] 3 LE beträgt.

[mm] |\overrightarrow{PL}| [/mm] = [mm] \wurzel{(\bruch{-4a+2}{5})^2 + 2^2 + (\bruch{-2a+1}{5})^2} [/mm] = 3

= [mm] \wurzel{\bruch{16a^2-16a+4}{25} + 2^2 + \bruch{4a^2-4a+1}{25}} [/mm]

= [mm] \wurzel{\bruch{20a^2-20a+5}{25} + 4 } [/mm] =  3

=  [mm] {20a^2-20a+5}{25} [/mm] + 4  =  9

=  [mm] {20a^2-20a+5}{25} [/mm] -5  = 0

=  [mm] 20a^2 [/mm] -20a +5 -125  = 0

=  [mm] 20a^2 [/mm] -20a -120  = 0

=  [mm] a^2 [/mm] -a -6  = 0

pq-Formel

[mm] a_{1/2} [/mm] = - [mm] \bruch{-1}{2} \pm \wurzel{(\bruch{-1}{2})^2 - (-6)} [/mm]

[mm] a_1 [/mm] = 3  
[mm] a_2 [/mm] = -2.


[ [mm] P_1 [/mm] ( 3 / 0 / 1) bzw. [mm] P_2 [/mm] (-2 / 0 / 1) haben von g den Abstand 3.]







        
Bezug
Abstand Punkt Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mi 01.09.2021
Autor: Gonozal_IX

Hiho,

also bei meiner Abiturprüfung sollte sowas dann mithilfe der []Hesseschen Normalform gelöst werden.

Gruß,
Gono

Bezug
                
Bezug
Abstand Punkt Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 Do 02.09.2021
Autor: hase-hh

Die Hessesche Normalenform benutze ich bei Abständen zwischen einem Punkt und einer Ebene.

Hier ist aber der Abstand zwischen einem Punkt und einer Geraden gesucht.

Anders gefragt: Wie soll das gehen?





Bezug
                        
Bezug
Abstand Punkt Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 02.09.2021
Autor: fred97


> Die Hessesche Normalenform benutze ich bei Abständen
> zwischen einem Punkt und einer Ebene.
>
> Hier ist aber der Abstand zwischen einem Punkt und einer
> Geraden gesucht.
>
> Anders gefragt: Wie soll das gehen?

Hallo hase,

schau mal hier:

https://studyflix.de/mathematik/abstand-punkt-gerade-2006


>
>
>
>  


Bezug
                                
Bezug
Abstand Punkt Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Do 02.09.2021
Autor: hase-hh

Danke Fred! Interessante Formel. :)



d = [mm] \bruch{|(\vec{p} -\vec{q})x\vec{u}|}{|\vec{u}|} [/mm]


[mm] \vec{p} [/mm] ist der Punkt P

[mm] \vec{q} [/mm] ist der Aufpunkt bzw. Stützvektor der Geraden

[mm] \vec{u} [/mm] ist der Richtungsvektor der Geraden


3 = [mm] \bruch{|(\vektor{a \\ 0 \\ 1} -\vektor{1 \\ 2 \\ 0})x\vektor{-1 \\ 0 \\ 2}|}{|\vektor{-1 \\ 0 \\ 2}|} [/mm]

3 = [mm] \bruch{|\vektor{a -1\\ -2 \\ 1}x\vektor{-1 \\ 0 \\ 2}|}{ \wurzel{(-1)^2+0^2 +2^2}} [/mm]


Kreuzprodukt

a-1     -1  

-2       0  
                        -2*2  - 1*0
1       2
                        1*(-1) - (a-1)*2
a-1     -1
                        (a-1)*0 - (-2)*(-1)  
-2      0

1     2  


=>  [mm] \vektor{-4\\ -2a +1 \\ -2 } [/mm]


3 = [mm] \bruch{|\vektor{-4\\ -2a +1 \\ -2 }|}{ \wurzel{(-1)^2+0^2 +2^2}} [/mm]

3 = [mm] \bruch{\wurzel{(-4)^2 +(-2a +1)^2 +(-2)^2}}{ \wurzel{(-1)^2+0^2 +2^2}} [/mm]


3 = [mm] \bruch{\wurzel{20 +(-2a +1)^2}}{ \wurzel{5}} [/mm]


9 = [mm] \bruch{20 +(-2a +1)^2}{5} [/mm]

25 = (-2a [mm] +1)^2 [/mm]

[mm] \pm [/mm] 5 = -2a +1

[mm] a_1 [/mm] = -2

[mm] a_2 [/mm] = 3.

Bezug
        
Bezug
Abstand Punkt Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 02.09.2021
Autor: HJKweseleit


> Wie muss a gewählt werden, damit der Abstand des Punktes P [mm]\vektor{a \\ 0 \\ 1}[/mm] zur Geraden g: [mm]\vec{x}[/mm] = [mm]\vektor{1 \\ 2 \\ 0}[/mm] + [mm]r*\vektor{ - 1 \\ 0 \\ 2 }[/mm]  
> 3 LE beträgt?
>  

Gehe einen beliebigen  Vektor [mm]\vec{y}[/mm] von g zu P:

[mm]\vec{y} = [/mm][mm]\vektor{1 \\ 2 \\ 0}[/mm] + [mm]r*\vektor{ - 1 \\ 0 \\ 2 }[/mm] - [mm]\vektor{a \\ 0 \\ 1}[/mm]= [mm]\vektor{1-a \\ 2 \\ -1}[/mm] + [mm]r*\vektor{ - 1 \\ 0 \\ 2 }[/mm] = [mm]\vektor{1-a -r\\ 2 \\ 2r - 1}[/mm]   Mit r sind alle möglichen solche Vektoren erfasst.

Welcher steht senkrecht auf g? (Skalarprodukt bilden)  (Lösung: a=3-5r)
Welcher davon hat Länge 3?     (Länge berechnen)   (Lösung: r=0 oder r=1)

Bezug
                
Bezug
Abstand Punkt Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Do 02.09.2021
Autor: hase-hh

Vielen Dank! Auch dieser Weg dürfte einfacher sein. ^^




I. Vektor von g zu P aufstellen

quasi g minus P


$ [mm] \vec{y} [/mm] = $$ [mm] \vektor{1 \\ 2 \\ 0} [/mm] $ + $ [mm] r\cdot{}\vektor{ - 1 \\ 0 \\ 2 } [/mm] $ - $ [mm] \vektor{a \\ 0 \\ 1} [/mm] $= $ [mm] \vektor{1-a \\ 2 \\ -1} [/mm] $ + $ [mm] r\cdot{}\vektor{ - 1 \\ 0 \\ 2 } [/mm] $ = $ [mm] \vektor{1-a -r\\ 2 \\ 2r - 1} [/mm] $  


II.  Welcher Vektor steht von diesen Vektoren senkrecht auf g?

Skalarprodukt bilden und dann a bestimmen.


[mm] \vec{y}x\vec{u} [/mm] = 0


[mm] \vec{u} [/mm] ist der Richtungsvektor der Geraden.


[mm] \vektor{1-a -r\\ 2 \\ 2r - 1}*\vektor{-1\\ 0 \\ 2} [/mm] = 0

-1 +a +r +4r -2 = 0


a = 3 -5r


III.


a in [mm] \vec{y} [/mm] einsetzen

[mm] \vektor{1-(3-5r) -r\\ 2 \\ 2r - 1} [/mm]

[mm] \vektor{-2+4r\\ 2 \\ 2r - 1} [/mm]


IV. r berechnen, so dass die Länge von [mm] \vec{y} [/mm] 3 ist.

[mm] \wurzel{(-2+4r)^2 +2^2+(2r-1)^2} [/mm] = 3

[mm] (-2+4r)^2 +2^2+(2r-1)^2 [/mm] = 9


4 -16r + [mm] 16r^2 [/mm] +4 + [mm] 4r^2 [/mm] -4r +1 = 9


[mm] 20r^2 [/mm] -20r = 0

=>  [mm] r_1 [/mm] = 0  und   [mm] r_2 [/mm] = 1


bzw. [mm] a_1 [/mm] = 3 - 5*0 =3

[mm] a_2 [/mm] = 3 -5*1 = -2.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]