matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenEinführung Analytische Geometrie (SchuleAbstand Punkt - Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Einführung Analytische Geometrie (Schule" - Abstand Punkt - Gerade
Abstand Punkt - Gerade < Einführung Analytisc < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Einführung Analytische Geometrie (Schule"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt - Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 So 30.11.2014
Autor: Johanna-Laura

Aufgabe
Bestimmen sie den Abstand von p = [mm] (5,3,1)^T [/mm] zu
G: [mm] x_{1}+ x_{2}- x_{3} [/mm] =1
   [mm] x_{1} [/mm]   - [mm] x_{3}= [/mm] 0

Um diese Aufgabe zu lösen habe ich aus G ein inhomogenes lineares Gleichungssystem gebildet: B= [mm] \pmat{ 1 & 1 & -1 | 1\\ 1 & 0 & -1 | 0}. [/mm]
Die Lösung des Gleichungssystem ist dann

L =  [mm] \vektor{t \\1 \\ t} [/mm] t [mm] \in [/mm] R | r [mm] \*\vektor{1 \\0\\ 1} [/mm] + [mm] s\*\vektor{0 \\ 1 \\ 0} [/mm]

diese Gerade möchte ich dann in Koordinatenform umwandeln um über die Hesseform den Abstand berechnen zu können. Hier tritt dann mein Problem auf. Zum Umwandeln setzte ich:
[mm] x_{1 } [/mm] = r + [mm] 0\*s [/mm]
[mm] x_{2} [/mm] = [mm] 0\*r [/mm] + s
[mm] x_{3} [/mm] = r + [mm] 0\*s [/mm]

Wie komme ich nun auf meine Koordinatenform? da ich [mm] x_{2} [/mm] nicht mit den anderen in Verbindung bringen kann? Ich kann ja daraus folgern dass
[mm] x_{1} [/mm] = [mm] x_{3} [/mm] <=> [mm] x_{1} [/mm] - [mm] x_{3} [/mm] = 0

Ist das dann meine Koordinatenform?

Vielen Dank schon mal für eure Hilfe!

        
Bezug
Abstand Punkt - Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 30.11.2014
Autor: Al-Chwarizmi


> Bestimmen sie den Abstand von p = [mm](5,3,1)^T[/mm] zu
>  G: [mm]x_{1}+ x_{2}- x_{3}[/mm] =1
>     [mm]x_{1}[/mm]   - [mm]x_{3}=[/mm] 0
>  Um diese Aufgabe zu lösen habe ich aus G ein inhomogenes
> lineares Gleichungssystem gebildet: B= [mm]\pmat{ 1 & 1 & -1\ |\ 1\\ 1 & 0 & -1\ |\ 0}.[/mm]
>  
> Die Lösung des Gleichungssystem ist dann
>  
> L =  [mm]\vektor{t \\1 \\ t}\quad t \ \in\ \IR\ \ |\ \ r \ *\vektor{1 \\0\\ 1}\ +\ s\ *\vektor{0 \\ 1 \\ 0}[/mm]     [haee]


Ein einziger Parameter genügt doch !

Geradengleichung:    [mm] $\pmat{x_1 \\x_2 \\ x_3}\ [/mm] =\ [mm] \pmat{t \\1 \\ t}\ [/mm] =\ [mm] \pmat{0\\1\\0}\,+\,t*\pmat{1\\0\\1} [/mm] $


> diese Gerade möchte ich dann in Koordinatenform umwandeln
> um über die Hesseform den Abstand berechnen zu können.    [haee]

Zur Berechnung eines Abstandes  Punkt/Gerade im [mm] \IR^3 [/mm]
ist die Hesseform nicht geeignet ! Falls du diese unbedingt
einsetzen möchtest, könntest du zuerst die beiden Abstände
[mm] d_1 [/mm] und [mm] d_2 [/mm] des Punktes p von den beiden gegebenen Ebenen mittels
Hesse berechnen. Außerdem berechnest du den Winkel [mm] \alpha [/mm]
zwischen den beiden Ebenen (bzw. zwischen ihren
Normalenvektoren). Dann bleibt ein planimetrisches
Problem zu lösen: berechne den Umkreisdurchmesser
eines Dreiecks, von dem zwei Seitenlängen [mm] (d_1 [/mm] und [mm] d_2) [/mm]
und ihr Zwischenwinkel [mm] \alpha [/mm] gegeben sind. Diese
Aufgabe kann man mittels Cosinussatz lösen.

LG ,   Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Einführung Analytische Geometrie (Schule"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]