matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAbschluss - Inklusion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Abschluss - Inklusion
Abschluss - Inklusion < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschluss - Inklusion: Definition nicht hinreichend ?
Status: (Frage) beantwortet Status 
Datum: 10:44 Di 08.05.2012
Autor: clemenum

Aufgabe
Zeigen Sie für Mengen $A,B [mm] \subset [/mm] X $ eines toplogischen Raumes $X:$
[mm] $\overline{A \cap B} \subset \overline{A} \cap \overline{B} [/mm] $
Warum gilt hier nicht die Gleichheit?

Nun, wir haben folgende Definition bezüglich des Abschlusses gelernt, welche ich hier gleich implizit auf das Beispiel anwenden möchte.
Zu zeigen wäre also:
[mm] $x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A\cap B}\neq \emptyset \Rightarrow x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A}\cap \overline{B}\neq \emptyset [/mm] $

Aber, ich sehe wirklich nicht, welche Schlussfolgerungsschritte ich dazwischen machen sollte. Ich kann nur ein paar anschaulich - intuitive Erklärungen abgeben, warum die Folgerung stimmt:
In [mm] $S_1 :=\overline{A\cap B}$ [/mm] kann es sein, dass die rechte Intrvallklammer von A bzw. die linke Intervallklammer von B offen bleibt, womit diese beiden Elemente im Abschluss nicht enthalten wären, wohl aber bei:
In [mm] $S_2 [/mm] := [mm] \overline{A } \cap \overline{B} [/mm] $ schließe ich bei jedem Intervall alle Intervallklammern, es bleibt keine offen, damit ist jedes Element von [mm] $S_1$ [/mm]  zwangsläufig in [mm] $S_2,$ [/mm] nicht aber umgekehrt, weil eben an der Grenze von $A$ bzw. am Anfang von $B$ es Schwierigkeiten geben könnte.

Frage: Wie kann ich das ganze formaler zeigen?

        
Bezug
Abschluss - Inklusion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Di 08.05.2012
Autor: fred97


> Zeigen Sie für Mengen [mm]A,B \subset X[/mm] eines toplogischen
> Raumes [mm]X:[/mm]
> [mm]\overline{A \cap B} \subset \overline{A} \cap \overline{B}[/mm]
> Warum gilt hier nicht die Gleichheit?
>  Nun, wir haben folgende Definition bezüglich des
> Abschlusses gelernt, welche ich hier gleich implizit auf
> das Beispiel anwenden möchte.
>  Zu zeigen wäre also:
>  [mm]x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A\cap B}\neq \emptyset \Rightarrow x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A}\cap \overline{B}\neq \emptyset[/mm]


Die Def. des Abschlußes hast Du nicht richtig !

Es gilt: x [mm] \in \overline{M} \gdw [/mm]  für jede Umgebung U von x gilt: U [mm] \cap [/mm] M [mm] \ne \emptyset. [/mm]

Sei also x [mm] \in \overline{A \cap B}. [/mm] Ist nun U eine Umgebung von x, so gilt:

               U [mm] \cap(A \cap [/mm] B) [mm] \ne \emptyset. [/mm]

Dann ist aber  U [mm] \cap [/mm] A  [mm] \ne \emptyset [/mm] und U [mm] \cap [/mm] B  [mm] \ne \emptyset [/mm]

Fazit:  x [mm] \in \overline{A} [/mm] und  x [mm] \in \overline{B} [/mm] .

FRED

>
> Aber, ich sehe wirklich nicht, welche
> Schlussfolgerungsschritte ich dazwischen machen sollte. Ich
> kann nur ein paar anschaulich - intuitive Erklärungen
> abgeben, warum die Folgerung stimmt:
> In [mm]S_1 :=\overline{A\cap B}[/mm] kann es sein, dass die rechte
> Intrvallklammer von A bzw. die linke Intervallklammer von B
> offen bleibt, womit diese beiden Elemente im Abschluss
> nicht enthalten wären, wohl aber bei:
> In [mm]S_2 := \overline{A } \cap \overline{B}[/mm] schließe ich bei
> jedem Intervall alle Intervallklammern, es bleibt keine
> offen, damit ist jedes Element von [mm]S_1[/mm]  zwangsläufig in
> [mm]S_2,[/mm] nicht aber umgekehrt, weil eben an der Grenze von [mm]A[/mm]
> bzw. am Anfang von [mm]B[/mm] es Schwierigkeiten geben könnte.
>
> Frage: Wie kann ich das ganze formaler zeigen?  


Bezug
                
Bezug
Abschluss - Inklusion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 Di 08.05.2012
Autor: clemenum

Ohh, ich sehe es! :-O

Vielen Dank für deine Hilfe, Fred :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]