matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbschätzung des Reihenrestes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Abschätzung des Reihenrestes
Abschätzung des Reihenrestes < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung des Reihenrestes: Ansatz zur Lösung
Status: (Frage) beantwortet Status 
Datum: 20:32 Mo 04.01.2010
Autor: NoAim

Aufgabe
Bestimmen Sie in Abhängigkeit von a € R den Konvergenzradius der Potenzreihe [mm] \sum_{k=0}^{N}[/mm]  [mm]{a \choose k}[/mm] [mm] x^k. [/mm]

Geben Sie ferner eine Abschätzung für den Reihenrest an, wenn man für a=0,5, x=1/36 nach dem 3ten Glied abbricht.

Den Konvergenzradius hab ich mit dem Quotientenkriterium bestimmt und komme dabei auf -1. Soweit so gut. Nur nun fehlt mir leicht der Gedankenblitz mit dem Reihenrest abschätzen.

Wüsste jemand einen Ansatz?

MfG NoAim

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abschätzung des Reihenrestes: Tipp
Status: (Antwort) fertig Status 
Datum: 23:48 Mo 04.01.2010
Autor: zahllos

Hallo,

Konvergenzradien sind immer größer gleich Null, hast du vielleich einen Betrag bei der Herleitung deines Konvergenzradius vergessen?
Zur Abschätzung des Reihenrestes schreibe einfach mal die ersten Glieder der Reihe auf, beachte dabei die Definition der Binomialkoeffizenten!
Fällt dir bei den Vorzeichen dieser Glieder etwas auf?

Ich hoffe das hilft dir etwas weiter!


Bezug
                
Bezug
Abschätzung des Reihenrestes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Di 05.01.2010
Autor: NoAim

Ja kann sein das mit das Betrag abhanden gekommen ist.

Leider scheitere ich schon beim ersten Glied der Reihe, da sich meiner Meinung nach der Binomialkoeffizient nicht aus einer Zahl kleiner als 1 bilden lässt. Sprich das Fakultät in der ausführlichen Schreibweise des Binomialkoeffizienten lässt sich auf das 0,5 nicht anwenden.



Bezug
                        
Bezug
Abschätzung des Reihenrestes: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Di 05.01.2010
Autor: angela.h.b.


> Ja kann sein das mit das Betrag abhanden gekommen ist.
>  
> Leider scheitere ich schon beim ersten Glied der Reihe, da
> sich meiner Meinung nach der Binomialkoeffizient nicht aus
> einer Zahl kleiner als 1 bilden lässt.

Hallo,

[willkommenmr].

Es geht hier nicht um Meinungen. Die Definitionen zählen.

> Sprich das
> Fakultät in der ausführlichen Schreibweise des
> Binomialkoeffizienten lässt sich auf das 0,5 nicht
> anwenden.

[]s. Verallgemeinerung des Binomialkoeffizienten

Gruß v. Angela


Bezug
                                
Bezug
Abschätzung des Reihenrestes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 06.01.2010
Autor: NoAim

Okay, damit ist meine Frage dann beantwortet =)

Danke für die tolle Hilfe :) Top Seite!

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]