matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitungen arccos
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Ableitungen arccos
Ableitungen arccos < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen arccos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Fr 04.07.2008
Autor: domenigge135

Hallo ich wollte mal fragen, ob ihr mir bei den ersten 3 Ableitungen der arccos Fkt. helfen könntet.

f(x)=arccos(x)
[mm] f'(x)=\bruch{-1}{\wurzel{1-x}} [/mm]
[mm] f''(x)=\bruch{1*\bruch{1}{2}(1-x^2)^{-\bruch{1}{2}}*(-2x)}{((1-x^2)^{\bruch{1}{2}})^2} [/mm]

Mein Problem ist nun zunächst letzteres geschcikt zusammenzufassen. Ich würde zunächst den Zähler zusammenfassen und mich dann anschließend um den Nenner kümmern.

ich hätte dan dazustehen: [mm] \bruch{-x}{(1-x^2)^{\bruch{1}{2}}*((1-x^2)^{\bruch{1}{2}})^2} [/mm]

Zähler ist okay. aber Nenner ist so eine Sache. Bitte um Hilfe.

MFG domenigge135

        
Bezug
Ableitungen arccos: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 04.07.2008
Autor: Al-Chwarizmi

Hallo domenigge,


  

> f(x)=arccos(x)
>  [mm]f'(x)=\bruch{-1}{\wurzel{1-x}}[/mm]       [notok]

        leider ist schon hier ein Fehler passiert
        richtig müsste es heissen:

        [mm]f'(x)=\bruch{-1}{\wurzel{1-x^2}}[/mm]
  

> [mm]f''(x)=\bruch{1*\bruch{1}{2}(1-x^2)^{-\bruch{1}{2}}*(-2x)}{((1-x^2)^{\bruch{1}{2}})^2}[/mm]         [ok]

        aha, der Exponent 2 ist also doch nicht einfach ganz verschwunden
        (nur ziemlich schade, wenn man zwar richtig gerechnet hat und
        beim Hinschreiben des Resultats noch einen Fehler macht...)

  

> Mein Problem ist nun zunächst letzteres geschcikt
> zusammenzufassen. Ich würde zunächst den Zähler
> zusammenfassen und mich dann anschließend um den Nenner
> kümmern.
>  
> ich hätte dan dazustehen:
> [mm]\bruch{-x}{(1-x^2)^{\bruch{1}{2}}*((1-x^2)^{\bruch{1}{2}})^2}[/mm]      [ok]
>  
> Zähler ist okay. aber Nenner ist so eine Sache. Bitte um
> Hilfe.


        man darf doch aber wohl voraussetzen, dass du solche
        Potenzrechenregeln wie etwa

        [m]\ a^m * a^n = a^{m+n} [/m]          [m]\ (a^m)^n=a^{m*n} [/m]

        kennst ?

LG


Bezug
                
Bezug
Ableitungen arccos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Fr 04.07.2008
Autor: domenigge135

jawoll kenne ich :-)

ich probier mal nur den Nenner...

[mm] (1-x^2)^\bruch{1}{2}*((1-x^2)^{\bruch{1}{2}})^2=(1-x^2)^\bruch{1}{2}*(1-x^2)=(1-x^2)^{\bruch{3}{2}} [/mm]

Bezug
                        
Bezug
Ableitungen arccos: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Fr 04.07.2008
Autor: Al-Chwarizmi

[ok]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]