matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Ableitungen
Ableitungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Di 02.02.2010
Autor: Krone

Aufgabe
Ableitung bilden von:

g(t) = [mm] 30-10e^{2-t} [/mm]


Hey,
wollte keinen neuen Thread aufmachen, daher die kurze frage. Ist das so richtig ?:

g'(t) = 30 * (-10) * [mm] (-1)*e^{2-t} [/mm]
= [mm] 300e^{2-t} [/mm]

Gruß

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Di 02.02.2010
Autor: Stefan-auchLotti


> Ableitung bilden von:
>  
> $g(t) [mm] =30-10e^{2-t}$ [/mm]
>  
>
> Hey,
>  wollte keinen neuen Thread aufmachen, daher die kurze
> frage. Ist das so richtig ?:
>  
> $g'(t) = 30 * (-10) * [mm] (-1)*e^{2-t}$ [/mm]
> [mm] $=300e^{2-t}$ [/mm]

[notok]

>  
> Gruß

Hi!

Du hast aus einer Summe ein Produkt gemacht! Beachte das $g(t) [mm] =30\red{-}10e^{2-t}$ [/mm] Minus im Term und nutze dementsprechend die Regel $(f+g)'=f'+g'$ in Verbindung mit der Kettenregel für die E-Funktion. Du bist auf dem richtigen Weg!

Grüße, Stefan.

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 02.02.2010
Autor: Krone


> > Ableitung bilden von:
>  >  
> > [mm]g(t) =30-10e^{2-t}[/mm]
>  >  
> >
> > Hey,
>  >  wollte keinen neuen Thread aufmachen, daher die kurze
> > frage. Ist das so richtig ?:
>  >  
> > [mm]g'(t) = 30 * (-10) * (-1)*e^{2-t}[/mm]
>  > [mm]=300e^{2-t}[/mm]

>  
> [notok]
>  
> >  

> > Gruß
>
> Hi!
>  
> Du hast aus einer Summe ein Produkt gemacht! Beachte das
> [mm]g(t) =30\red{-}10e^{2-t}[/mm] Minus im Term und nutze

ja schon klar ... aber ... für mich gehört die -10 zur E-Funktion, da * doch vor Minus geht ... versteh ich nicht ... naja egal

> dementsprechend die Regel [mm](f+g)'=f'+g'[/mm] in Verbindung mit
> der Kettenregel für die E-Funktion. Du bist auf dem
> richtigen Weg!
>  
> Grüße, Stefan.

Also so:

g'(t) = [mm] (30-10)*(-t)*e^{2-t} [/mm]

?

versteh aber den sinn nicht ...

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Di 02.02.2010
Autor: Stefan-auchLotti


> > > Ableitung bilden von:
>  >  >  
> > > [mm]g(t) =30-10e^{2-t}[/mm]
>  >  >  
> > >
> > > Hey,
>  >  >  wollte keinen neuen Thread aufmachen, daher die
> kurze
> > > frage. Ist das so richtig ?:
>  >  >  
> > > [mm]g'(t) = 30 * (-10) * (-1)*e^{2-t}[/mm]
>  >  > [mm]=300e^{2-t}[/mm]

>  >  
> > [notok]
>  >  
> > >  

> > > Gruß
> >
> > Hi!
>  >  
> > Du hast aus einer Summe ein Produkt gemacht! Beachte das
> > [mm]g(t) =30\red{-}10e^{2-t}[/mm] Minus im Term und nutze
>
> ja schon klar ... aber ... für mich gehört die -10 zur
> E-Funktion, da * doch vor Minus geht ... versteh ich nicht
> ... naja egal
>  
> > dementsprechend die Regel [mm](f+g)'=f'+g'[/mm] in Verbindung mit
> > der Kettenregel für die E-Funktion. Du bist auf dem
> > richtigen Weg!
>  >  
> > Grüße, Stefan.
>
> Also so:
>  
> g'(t) = [mm](30-10)*(-t)*e^{2-t}[/mm]
>  
> ?
>  
> versteh aber den sinn nicht ...

Den Sinn wovon? Jetzt hast du Punkt-vor-Strich-Rechnung missachtet und falsch abgeleitet. Geh systematisch vor. Wir teilen g in zwei Funktionen auf, die in der Summe wieder g ergeben: $g=f+h$ mit $f(t)=30$ und [mm] $h(t)=-10e^{2-t}$ [/mm]

Wende jetzt mal $g'=f'+h'$ an, indem du $f$ und $h$ getrennt ableitest gemäß den bekannten Ableitungsregeln (Faktorregel, Regel für konstante Summanden, Kettenregel).

Addiere danach $f'$ und $h'$.

Grüße, Stefan.

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Di 02.02.2010
Autor: Krone


> > > > Ableitung bilden von:
>  >  >  >  
> > > > [mm]g(t) =30-10e^{2-t}[/mm]

>
> Den Sinn wovon? Jetzt hast du Punkt-vor-Strich-Rechnung
> missachtet und falsch abgeleitet. Geh systematisch vor. Wir
> teilen g in zwei Funktionen auf, die in der Summe wieder g
> ergeben: [mm]g=f+h[/mm] mit [mm]f(t)=30[/mm] und [mm]h(t)=-10e^{2-t}[/mm]
>  
> Wende jetzt mal [mm]g'=f'+h'[/mm] an, indem du [mm]f[/mm] und [mm]h[/mm] getrennt
> ableitest gemäß den bekannten Ableitungsregeln
> (Faktorregel, Regel für konstante Summanden,
> Kettenregel).
>  
> Addiere danach [mm]f'[/mm] und [mm]h'[/mm].
>  

Ok, 3. Versuch ...

g'(t) = 10t [mm] *e^{2-t} [/mm]

?

Weil die 30 abgeleitet fällt weg, dann muss ich ja nur die e-funktion ableiten.
oder ?


> Grüße, Stefan.


Bezug
                                        
Bezug
Ableitungen: Antwort editiert: geschlafen!
Status: (Antwort) fertig Status 
Datum: 19:28 Di 02.02.2010
Autor: Herby

Hallo,

> > > > > Ableitung bilden von:
>  >  >  >  >  
> > > > > [mm]g(t) =30-10e^{2-t}[/mm]
>  
> >
> > Den Sinn wovon? Jetzt hast du Punkt-vor-Strich-Rechnung
> > missachtet und falsch abgeleitet. Geh systematisch vor. Wir
> > teilen g in zwei Funktionen auf, die in der Summe wieder g
> > ergeben: [mm]g=f+h[/mm] mit [mm]f(t)=30[/mm] und [mm]h(t)=-10e^{2-t}[/mm]
>  >  
> > Wende jetzt mal [mm]g'=f'+h'[/mm] an, indem du [mm]f[/mm] und [mm]h[/mm] getrennt
> > ableitest gemäß den bekannten Ableitungsregeln
> > (Faktorregel, Regel für konstante Summanden,
> > Kettenregel).
>  >  
> > Addiere danach [mm]f'[/mm] und [mm]h'[/mm].
>  >  
>
> Ok, 3. Versuch ...
>  
> g'(t) = 10t [mm]*e^{2-t}[/mm]
>
> ?

daumenhoch nein, nicht richtig - sorry, hab's erst jetzt gesehen: "ohne t"!


[mm] g'(t)=10*e^{2-t} [/mm]

> Weil die 30 abgeleitet fällt weg, dann muss ich ja nur die
> e-funktion ableiten.
>  oder ?

ja :-)



LG
Herby

Bezug
                                                
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Di 02.02.2010
Autor: Krone

na endlich ^^

danke euch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]