matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Ableitungen
Ableitungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Mo 22.10.2007
Autor: moody

Aufgabe
[mm] \bruch{k+lnx}{x} [/mm]

Davon die Ableitungen:

1. [mm] \bruch{-lnx-k-1}{x^2} [/mm]

2. [mm] \bruch{2lnx +2k -1}{x^3} [/mm]

3. [mm] \bruch{-10lnx-10k+12}{x} [/mm]

Kann das jemand bestätigen?

        
Bezug
Ableitungen: Korrektur
Status: (Antwort) fertig Status 
Datum: 15:13 Mo 22.10.2007
Autor: Roadrunner

Hallo moody!


>  Davon die Ableitungen:
>  
> 1. [mm]\bruch{-lnx-k-1}{x^2}[/mm]

[ok]

  

> 2. [mm]\bruch{2lnx +2k -1}{x^3}[/mm]

[notok] Hier habe ich erhalten: [mm] $f_k''(x) [/mm] \ = \ [mm] \bruch{2lnx +2k - \ \red{3}}{x^3}$ [/mm]

  

> 3. [mm]\bruch{-10lnx-10k+12}{x}[/mm]

Dann Folgefehler ... und es muss mit Sicherheit im Nenner [mm] $x^{\red{4}}$ [/mm] heißen!


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 22.10.2007
Autor: moody

Hallo,

erstmal Danke.

Wie kommt man denn auf  - 3?


Bezug
                        
Bezug
Ableitungen: 2. Ableitung
Status: (Antwort) fertig Status 
Datum: 15:25 Mo 22.10.2007
Autor: Roadrunner

Hallo moody!


[mm] $$f_k''(x) [/mm] \ = \ [mm] \bruch{\red{-} \ \bruch{1}{x}*x^2-\left[1-k-\ln(x)\right]*2x}{x^4} [/mm] \ = \ [mm] \bruch{\red{-}1-\left[1-k-\ln(x)\right]*2}{x^3} [/mm] \ = \ [mm] \bruch{\red{-}1-2+2*k+2*\ln(x)}{x^3} [/mm] \ = \ [mm] \bruch{\red{-3}+2*k+2*\ln(x)}{x^3}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 22.10.2007
Autor: moody

Damit käme man dann auf

[mm] \bruch{-2lnx -2k + 6}{x^4} [/mm] als 3. Ableitung, oder?

Bezug
                                        
Bezug
Ableitungen: nicht richtig!
Status: (Antwort) fertig Status 
Datum: 16:29 Mo 22.10.2007
Autor: Roadrunner

Hallo moody!


Du hast - glaube ich - die Ableitung des Nenners nicht richtig berücksichtigt mit [mm] $3x^2$ [/mm] .

Ich erhalte als 3. Ableitung:  [mm] $f_k'''(x) [/mm] \ = \ [mm] \bruch{11-6*k-6*\ln(x)}{x^4}$ [/mm] .


Gruß vom
Roadrunner


Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mo 22.10.2007
Autor: moody

jetzt bin ich ganz verwirrt.

wieso -1/x und nicht 1/x

Bezug
                                        
Bezug
Ableitungen: wegen - ln(x)
Status: (Antwort) fertig Status 
Datum: 16:02 Mo 22.10.2007
Autor: Roadrunner

Hallo moody!


Da [mm] $-\bruch{1}{x}$ [/mm] die Ableitung von [mm] $\red{-} [/mm] \ [mm] \ln(x)$ [/mm] ist.


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitungen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 15:44 Mo 22.10.2007
Autor: rainerS

Hallo moody, hallo Roadrunner,

kleiner Fehler:

> >  Davon die Ableitungen:

>  >  
> > 1. [mm]\bruch{-lnx-k-1}{x^2}[/mm]
>  
> [ok]

Richtig: [mm]\bruch{-\ln x-k\red{+}1}{x^2}[/mm].

Dann wird auch klar, woher die -3 bei der 2. Ableitung kommt.

Viele Grüße
  Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]