matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:16 Fr 02.02.2007
Autor: antjeb.

Aufgabe
Gegeben ist die Funktion: (x/a) * (e^ax)
Gesucht sind die drei Ableitungen

Hallo Leute.
Ich hoffe ihr könnt mir helfen
bin irgendwie etwas irritiert.

Es ist mir klar, dass ich die produktregel anwenden muss
u= a^-x  und u'=a^-x-1 (?)
v = e^ax und v'= e^ax

nach produktregel also
fa' (x) = (a^-x-1 * e^ax) + (a^-x*e^ax)

aber wie mach ich dann weiter?
Ist das schon falsch?
Liebe Grüße
Antje



Ich habe diese Frage in keinem weiteren Forum etc. gestellt.

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Fr 02.02.2007
Autor: schachuzipus


> Gegeben ist die Funktion: (x/a) * (e^ax)
>  Gesucht sind die drei Ableitungen
>  Hallo Leute.
>  Ich hoffe ihr könnt mir helfen
>  bin irgendwie etwas irritiert.
>  
> Es ist mir klar, dass ich die produktregel anwenden muss
>  u= a^-x  und u'=a^-x-1 (?)
>  v = e^ax und v'= e^ax
>  
> nach produktregel also
>  fa' (x) = (a^-x-1 * e^ax) + (a^-x*e^ax)
>  
> aber wie mach ich dann weiter?
>  Ist das schon falsch?
>  Liebe Grüße
>  Antje
>  
>
>
> Ich habe diese Frage in keinem weiteren Forum etc.
> gestellt.


Hmm Hallo

sieht deine Funktion so aus? [mm] f(x)=\bruch{1}{a}x*e^{ax} [/mm]

Wenn ja ist mit der Produktregel und [mm] u(x):=\bruch{1}{a}x [/mm] und [mm] v(x):=e^{ax}: [/mm]

[mm] u'(x)=\bruch{1}{a} [/mm] und [mm] v'(x)=ae^{ax}, [/mm] also

[mm] f'(x)=\bruch{1}{a}*e^{ax}+\bruch{1}{a}x*e^{ax}*a [/mm] (nach Kettenregel)

[mm] =\left(\bruch{1}{a}+x\right)e^{ax} [/mm]


Gruß

schachuzipus

Bezug
                
Bezug
Ableitungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:02 Fr 02.02.2007
Autor: antjeb.

Aufgabe
2. und 3. Ableitung

Mensch natürlich!!
Vielen Dank für deine Antwort

Hab jetzt damit weitergerechnet und komme bei der 2. ableitung auf e^ax (2+ax)
ist das korrekt?

Bitte um Antwort
Vielen dank
Antje

Bezug
                        
Bezug
Ableitungen: Richtig!
Status: (Antwort) fertig Status 
Datum: 23:07 Fr 02.02.2007
Autor: Loddar

Hallo Antje!


> Hab jetzt damit weitergerechnet und komme bei der 2. ableitung auf
> e^ax (2+ax)

[ok] Stimmt!


Gruß
Loddar


Bezug
                                
Bezug
Ableitungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:12 Fr 02.02.2007
Autor: antjeb.

Aufgabe
3. Ableitung

Cooool,
Danke

so jetzt noch die dritte, dann bin ich weg hier ;)
ae^ax (3 + ax)

Lg
Antje

Bezug
                                        
Bezug
Ableitungen: auch richtig!
Status: (Antwort) fertig Status 
Datum: 23:18 Fr 02.02.2007
Autor: Loddar

Hallo Antje!


Auch diese Ableitung stimmt [daumenhoch] ...


Gruß
Loddar


Bezug
                                                
Bezug
Ableitungen: beendet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Fr 02.02.2007
Autor: antjeb.

Vielen vielen Dank
Antje

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]