matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationAbleitung des Besselintegrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Ableitung des Besselintegrals
Ableitung des Besselintegrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung des Besselintegrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Mo 16.07.2012
Autor: hNy

Ich muss zeigen, dass das Besselintegral dieses DGL für alle N [mm] \in \IZ [/mm] erfüllt:
[mm] x^{2}f''+xf'+(x^{2}-n^{2})f [/mm] = 0

[mm] F(x)=1/\pi \integral_{0}^{\pi}{cos(x sin(t) - nt) dt} [/mm]
Stimmen meine Ableitungen denn für das Integral?
[mm] F'(x)=1/\pi \integral_{0}^{\pi}{-sin(t)sin(x sin(t) - nt) dt} [/mm]
[mm] F''(x)=1/\pi \integral_{0}^{\pi}{-sin^{2}(t)cos(x sin(t) - nt) dt} [/mm]

Von hier an soll ich mit partieller Integration weiterarbeitern. Das liefert mir dann für [mm] F'(x)=1/\pi \integral_{0}^{\pi}{-(cos(t)-n)cos(t)cos(x sin(t) - nt) dt}. [/mm] Von dort schaffe ichs allerdings nicht aufzulösen und ich befürchte, dass ich schon vorher falsch abgeleitet hab. Wäre um hilfe sehr dankbar

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung des Besselintegrals: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Mo 16.07.2012
Autor: MathePower

Hallo hNy,


[willkommenmr]


> Ich muss zeigen, dass das Besselintegral dieses DGL für
> alle N [mm]\in \IZ[/mm] erfüllt:
>  [mm]x^{2}f''+xf'+(x^{2}-n^{2})f[/mm] = 0
>  
> [mm]F(x)=1/\pi \integral_{0}^{\pi}{cos(x sin(t) - nt) dt}[/mm]
> Stimmen meine Ableitungen denn für das Integral?
>  [mm]F'(x)=1/\pi \integral_{0}^{\pi}{-sin(t)sin(x sin(t) - nt) dt}[/mm]
>  
> [mm]F''(x)=1/\pi \integral_{0}^{\pi}{-sin^{2}(t)cos(x sin(t) - nt) dt}[/mm]
>  
> Von hier an soll ich mit partieller Integration
> weiterarbeitern. Das liefert mir dann für [mm]F'(x)=1/\pi \integral_{0}^{\pi}{-(cos(t)-n)cos(t)cos(x sin(t) - nt) dt}.[/mm]
> Von dort schaffe ichs allerdings nicht aufzulösen und ich
> befürchte, dass ich schon vorher falsch abgeleitet hab.


Die  Ableitungen sind richtig.


> Wäre um hilfe sehr dankbar
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]