Ableitung L^2 Funktionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 03:12 Mi 03.07.2019 | Autor: | lenz |
Hallo
Ich hätte eine kurze allgemeine Frage: Sind die Ableitungen von Funktionen aus [mm] \IL^2 [/mm] (quadratintegrierbare Funktionen) bzw. [mm] \IL^1 [/mm] (integrierbare Funktionen) ebenfalls in [mm] \IL^2 [/mm] oder [mm] \IL^1 [/mm] ?
Ich hatte zunächst intuitiv gedacht ja, weil für Funktionen, die im unendlichen hinreichend schnell abfallen, ja deren Steigung auch irgendwie gegen 0 gehen müsste, jetzt bin ich aber unsicher geworden, weil ich nichts dazu gefunden habe. Bspw. für eine oszillierende Funktion, die gegen 0 geht, könnte die Ableitung größer 0 bleiben, oder?
Wenn mir jemand eine kurze Antwort oder ein Gegenbeispiel sagen könnte, wäre ich dankbar.
Gruß Lennart
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:17 Mi 03.07.2019 | Autor: | fred97 |
> Hallo
> Ich hätte eine kurze allgemeine Frage: Sind die
> Ableitungen von Funktionen aus [mm]\IL^2[/mm] (quadratintegrierbare
> Funktionen) bzw. [mm]\IL^1[/mm] (integrierbare Funktionen) ebenfalls
> in [mm]\IL^2[/mm] oder [mm]\IL^1[/mm] ?
> Ich hatte zunächst intuitiv gedacht ja, weil für
> Funktionen, die im unendlichen hinreichend schnell
> abfallen, ja deren Steigung auch irgendwie gegen 0 gehen
> müsste, jetzt bin ich aber unsicher geworden, weil ich
> nichts dazu gefunden habe. Bspw. für eine oszillierende
> Funktion, die gegen 0 geht, könnte die Ableitung größer
> 0 bleiben, oder?
> Wenn mir jemand eine kurze Antwort oder ein Gegenbeispiel
> sagen könnte, wäre ich dankbar.
> Gruß Lennart
Sei [mm] $f(x)=\sqrt{x}.$ [/mm] Dann ist $f [mm] \in \IL^2(0,1)$ [/mm] und $f'(x)= [mm] \frac{1}{2 \sqrt{x}}.$
[/mm]
Dann haben wir $f' [mm] \notin \IL^2(0,1)$ [/mm] , denn das Integral [mm] $\int_0^1 \frac{1}{x} [/mm] dx$ is divergent.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 17:56 Mi 03.07.2019 | Autor: | lenz |
Hallo
Danke für die Antwort. Sorry, ich hatte die Frage etwas ungenau formuliert.
Es geht speziell um Wellenfunktionen, genauer Lösungen der Schrödingergl.
im Intervall [mm] -\infty [/mm] bis [mm] \infty. [/mm] Kann man darüber irgendwelche Aussagen machen?
Der Hintergrund ist, dass ich ein Paper bearbeiten soll, in dem bei einer partiellen Intergration ein Faktor [mm] e^{ipx}\Psi'(x)|_{-\infty}^{\infty} [/mm] Null werden soll und ich das Riemann-Lebesgue Lemma anwenden möchte, das aber nur für integrierbare Funktionen [mm] \Psi [/mm] gilt. Die Wellenfunktion [mm] \Psi [/mm] selber ist als [mm] \in \IL^2 [/mm] angenommen. Ich weiß, dass Physiker desweilen [mm] e^{ip\infty}=0 [/mm] setzen. Es wäre aber schöner, es begründen zu können.
Gruß Lennart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Sa 03.08.2019 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|