matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung
Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Di 23.11.2010
Autor: Igor1

Aufgabe
Beweisen Sie , daß die Ableitung der Funktion [mm] f:\IR^{2} \to \IR [/mm] , [mm] f(x,y)=x^{2}+y^{2} [/mm]  gleich (2x 2y) ist.


Hallo,

um die Ableitung von solchen Funktionen zu bestimmen, bildet man die partiellen Ableitungen ( man bildet grad f).

Der Beweis wäre einfach, wenn man sagen würde: Es reicht aus, die partiellen Ableitungen zu bestimmen und diese sind 2x bzw. 2y (grad(f) =
(2x 2y).

Diese  Vorgehensweise ist Standard.
Jedoch , ich denke, daß man bei dieser Aufgabe zuerst zeigen sollte, dass die Ableitung:= df(x,y) = grad f(x,y).

Ich habe eine Definition von df(x,y) im Skript gefunden, die jedoch nicht so einfach zu verstehen ist (df(x,y) ist eine homogen lineare  Funktion , die mit der Definition "differenzierbar im Punkt p" zusammenhängt.

Meine Frage ist also: wie zeigt man df(x,y)=gradf(x,y) ?
Muss man die Definition von der totalen Differenzierbarkeit verwenden oder funktioniert das einfacher?


PS: Im Skript gibt es ein Lemma, dass falls  f in p differenzierbar ist, dann
gilt df(p) = <gradf(p), [mm] \Delta [/mm] x> . Das Problem ist hier , dass man erst zeigen soll : f ist differenzierbar in p.




Gruß
Igor

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Di 23.11.2010
Autor: fred97

Vielleicht hattet Ihr folgenden Sätze:

SATZ 1:  Ist $ [mm] f:\IR^{2} \to \IR [/mm] $  auf [mm] \IR^2 [/mm] partiell differenzierbar und sind die partiellen Ableitungen [mm] f_x [/mm] und [mm] f_y [/mm] auf [mm] \IR^2 [/mm] stetig, so ist f auf [mm] \IR^2 [/mm] differenzierbar .

SATZ 2: Ist $ [mm] f:\IR^{2} \to \IR [/mm] $  auf [mm] \IR^2 [/mm] differenzierbar, so ist f auf [mm] \IR^2 [/mm] paartiell differenzierbar  und

               f'= gradf auf [mm] \IR^2. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]